新加坡金融監管局發布金融服務產業轉型藍圖,以提升金融科技創新力

  考量金融服務業面對科技之影響,金融領域必須轉型,以維持競爭力與時並進,新加坡金融監管局於2017年10月30日發布金融服務領域之產業轉型藍圖(Industry Transformation Map),旨於成為一個連結全球市場、支持亞洲發展,以及為新加坡經濟服務之全球金融中心。

  該產業轉型藍圖包含了三部分,分別係:商業策略、創新與監理、以及就業與技能。

  一、商業策略:成為領先國際財富管理樞紐。為推動亞洲發展,新加坡金管局預計與業界合作,將新加坡發展為私募市場融資平台。

  二、創新和監管:發展重點為促進金融領域創新之普及,並鼓勵使用科學技術提升效率與創造機會,其具體方式包括:

  1. 透過API應用程式介面,鼓勵金融機構提升創造力和科技創新。
  2. 與金融機構合作打造常用的工具,如電子支付、電子身分識別(know-your-client)機制等。
  3. 促進和投資研發,開發新的解決方案,包括使用分帳式技術進行銀行間的支付與貿易融資。
  4. 擴展與其他Fintech中心之間的跨境合作協議,讓新加坡成為國外Fintech新創企業之育成基地。
  5. 使用科學技術,簡化金融機構監管。

  三、就業和技能:新加坡金管局將擴大金融服務業的人才庫,加強新入和中期轉換跑道之人員在資訊科技上的專業技能。

  該金融服務產業轉型藍圖之目標為,每年在金融領域達到4.3%實際增長值,並創造3,000個工作,其中金融科技領域部分達成1,000個工作機會。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 新加坡金融監管局發布金融服務產業轉型藍圖,以提升金融科技創新力, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7910&no=67&tp=1 (最後瀏覽日:2026/01/30)
引註此篇文章
你可能還會想看
日本著作權法修正促進人工智慧開發

  2018年5月18日,於第196次參議院會議中通過「著作權法」修正案,並於5月25日公布,預計於2019年1月1日施行。本次修正是為因應數位網路技術的發展,對需要著作權人同意的行為範圍進行檢視。其中第47條之7修正、及新增之第30條之4與第47條之5與人工智慧發展有重大相關。   日本著作權法於2009年的修正中,增加第47條之7規定,原本可能構成著作權侵害之資料分析、機器學習行為(未經原作者同意複製、改作),只要在必要限度內,不分是否有營利,皆無須權利人同意。然而本條在使用上因為未涵蓋成果物的讓與行為,也就是如果公開販售學習完成的資料集或是人工智慧模型,甚至於同一平台共享資料集都可以構成侵害。有鑑於此,才在本次修法中修正相關條文。   本次修正中,增加第30條之4規範於必要限度內可利用他人著作物的行為,其中在同條第二款中認可第47條之5第1項第2款之行為,也就是「利用電子計算機的情報解析及提供其結果」,亦可被認為不違反著作權法,因而補上原本第47條之7的漏洞。   惟須注意的是,所謂的必要限度還是有嚴格的比例限制,不能無限制使用。由於目前本次修正還尚未生效,未來對人工智慧發展的應用會產生什麼樣的實際影響,值得繼續觀察。

英國與美國為人工智慧安全共同開發簽署合作備忘錄

英國技術大臣(U.K. Secretary of State for Science)蜜雪兒·多尼蘭(Michelle Donelan)和美國商務部長(U.S. Secretary of Commerce)吉娜·雷蒙多(Gina Raimondo)於2024年4月1日在華盛頓特區簽署一份合作備忘錄(MOU),雙方將共同開發先進人工智慧(frontier AI)模型及測試,成為首批就測試和評估人工智慧模型風險等進行正式合作之國家。 此備忘錄之簽署,是為履行2023年11月在英國的布萊切利公園(Bletchley Park)所舉行的首屆人工智慧安全峰會(AI Safety Summit)上之承諾,諸如先進AI的急速進步及濫用風險、開發者應負責任地測試和評估應採取之適當措施、重視國際合作和資訊共享之必要性等等,以此為基礎羅列出兩國政府將如何在人工智慧安全方面匯集技術知識、資訊和人才,並開展以下幾項聯合活動: 1.制定模型評估的共用框架(model evaluations),包括基礎方法(underpinning methodologies)、基礎設施(infrastructures)和流程(processes)。 2.對可公開近用模型執行至少一次聯合測試演習(joint testing exercise)。 3.在人工智慧安全技術研究方面進行合作,以推進先進人工智慧模型之國際科學知識,並促進人工智慧安全和技術政策的一致性。 4.讓英、美兩國安全研究所(AI Safety Institute)間的人員互相交流利用其團體知識。 5.在其活動範圍內,依據國家法律、法規和契約規定來相互共享資訊。 換言之,兩國的機構將共同制定人工智慧安全測試之國際標準,以及適用於先進人工智慧模型設計、開發、部署、使用之其他標準。確立一套通用人工智慧安全測試方法,並向其他合作夥伴分享該能力,以確保能夠有效應對這些風險。就如英國技術大臣蜜雪兒·多尼蘭強調的,確保人工智慧的安全發展是全球性問題,只有通過共同努力,我們才能面對技術所帶來的風險,並利用這項技術幫助人類過上更好的生活。

澳洲域名註冊新規定,協助品牌企業同步保障商標權及域名使用權

  澳洲域名註冊管理機構(auDA)於2021年4月12日正式施行全新的域名註冊新規定,此新規定之主要改革目的在於確保.au網域名稱的安全性,並同步保障品牌商標權。新規定適用範圍包含品牌所有人與品牌企業最常使用之「.com.au」和「.net.au」網域名。   新域名申請人經常以下列方式,來滿足域名申請資格的要求:澳洲公民、澳洲永久居住權人;依據2001年澳洲公司法所合法註冊的本土公司;澳洲商標權所有權人或商標申請人等。若以澳洲商標權作為域名申請資格者,其域名必須與其澳洲註冊商標名稱相同(在規定修正前,僅要求網域名與商標註冊名稱一定程度的密切關聯),但不包括標點符號和諸如a、the、of或&等類似用語或符號。   如現有已經註冊「.com.au」或「.net.au」域名者,同樣須遵守新規則,否則即可能失去網域使用權。不符合現行規範者,得以兩種方式調整:(1)出具證明其非依據註冊商標註冊網域名,或(2)於澳洲申請註冊商標,使網域名稱與商標名同一。   澳洲域名註冊新規定,有相當程度可阻止域名搶註者侵害品牌商標權。建議預計前往澳洲發展之品牌企業,可事前布局域名及商標權;特別是可事先申請註冊商標,如此亦可有權申請同於商標名之網域名稱,穩固品牌對外識別的一致性。

美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

TOP