美國聯邦與州政府對於污染物排放超標免責立法之衝突。

  美國聯邦最高法院在2017年6月拒絕對聯邦法令-廠房之啟動,停工,與故障之許可證取得(Startup, Shutdown, Malfunction, SSM)底下之州際執行計畫(State Implementation Plans,SIPs)免責條款的上訴聽案,即各州對於SSM的污染物超標限制,無權力訂定免責條款。1聯邦法令SSM規定公司廠房等所有者或營運者需對於初始營運、日後關閉、中間故障等作業程序與維護措施做成報告以獲得並定期更新營業許可證,報告中需對於預測與計畫中的污染物排放與災難可能做說明,並以遵守聯邦法規對污染物排放相關規定為前提。2 聯邦政府當時以美國聯邦法規(Code of Federal Regulation)以及空氣清潔法案(The Clean Air Act)裡的國家周遭空氣品質標準(National Ambient Air Quality Standards) 為準則,授予各州訂定SIP的權限,因此才有各州多以促進經濟、展業發展為由而自行訂定免責條款的產生。

  在原本的SSM機制下,計畫中的污染物超標可能適用各州的免責條款,而非計畫或預測中的污染物超標則會依是否有正當辯護,而可能被下禁治令。隨後,因美國前總統歐巴馬十分重視環境保護,而與美國環境保護總局(Environmental Protection Agency,EPA)頒佈新政策,下令各州把其SIP裡對於污染物超標的免責條款全部刪去。

  這樣的大動作使各州政府與企業主十分不開心,便開啟了一連串與EPA的訴訟。2008年D.C.巡迴法院在Sierra Club v. EPA 3判定SSM期間內的違反污染污物排放限額不得有任何免責例外。2014年D.C.巡迴法院於Natural Resources Defense Council v. EPA 4更判定EPA沒有權限給予在SSM期間內違法業者創造任何答辯。雖然美國聯邦最高法院拒絕對此爭議聽案,但目前EPA仍有與州政府及企業主訴訟案在進行。

相關連結
※ 美國聯邦與州政府對於污染物排放超標免責立法之衝突。, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7918&no=67&tp=1 (最後瀏覽日:2026/01/13)
引註此篇文章
你可能還會想看
保護、分級與言論(下)

美國白宮公布「聯邦政府與私部門提升智慧電力市場再生能源與儲能現況簡報」

  美國白宮在2016年6月16日舉行「提升智慧電力市場再生能源與儲能行動方案高峰會」,並於會後公布「聯邦政府與私部門提升智慧電力市場再生能源與儲能現況簡報」(Federal and Private Sector Actions on Scaling Renewable Energy and Storage with Smart Markets)等全美在此領域所採的各項措施。   白宮指出:目前透過新的行政部門行動措施與33州政府及私部門的承諾,除了將加速再生能源與儲能的電網整合,並預計在未來5年增加1.3GW的儲能採購與部署。   在聯邦政府方面,相關的行動包括白宮經濟顧問委員會(White House Council of Economic Advisers)就整合再生能源的電網技術與經濟面向發佈新報告、聯邦政府承諾進行增加聯邦與軍事基地的儲能與微電網的計畫,並提供偏鄉社群微電網建置資金,與能源部(DOE)促進能源資料的使用與標準化。   在私部門方面,相關的行動則有16家電業在至少8州公布未來5年的儲能採購與部署目標、投資人承諾在能源儲存領域投入1億3千萬美元資金,和電力公司與開發商承諾部署智慧熱水器、智慧電表,與需量反應計畫。   在上述措施中,加州公共事業委員會(California Public Utilities Commission, CPUC)承諾為更可靠的電網建立管制架構,並使用戶可從不同的分散型能源資源選擇,同時促進智慧電表與電網運作情形資料的蒐集、分析與散佈。   而綠色按鈕聯盟(Green Button Alliance)則宣布將以示範計畫提供聚集、匿名的能源使用資訊供研究與公益使用。目前規劃此示範計畫將由參與的電業透過智慧電表部署所提供的匿名能源使用資訊建立資料庫。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

日本國土交通省航空局公布日本無人機飛行安全指引

  日本國土交通省航空局於2017年9月12日公布修正版日本無人機飛行安全指引(「無人航空機(ドローン、ラジコン機等)の安全な飛行のためのガイドライン」を改定しました),乃依據修正之航空法規定(平成27年法律第67號)制訂無人機飛行之相關基本規則。   定義所謂無人機乃指非人搭乘,透過遠距遙控或自動駕駛而飛行之飛機、旋翼飛機、滑翔機及飛艇。而無人機禁止飛行在150公尺以上高空,不得在航空站周邊空域(包含進入),以禁止在人口集中地區之上空(150公尺以下)。   除經國土交通省同意之例外規則外,無人機之飛行必須在日出後日沒前,且需在直接肉眼目視範圍內之監視下,與第三人或他人建築物、車輛等物體應距離30公尺以上,並不得在祭拜或假日等人群聚集之場所上空飛行,也不得輸送爆裂物等危險物品,亦不得從無人機上投擲物品。另外應注意事項,例如飛行場所除了航空站周邊外,直升機等降落可能之場所、迫降場所、高速公路或高速鐵路等、鐵路周邊或車道周邊等、高壓電線、變電所、電波塔及無線電設施等附近應注意飛行安全。   於飛行之際,不得飲酒等造成不當操作,飛行前應注意天氣狀況、飛機無損害或故障、電池燃料充足等,並確保周邊無障礙物,並應迴避與飛機或無人飛機之衝突。平時應保持無人機之狀況良好,且維持日常操作良好技能,並鼓勵投保人身或財產保險。

TOP