行動定位服務中的位置資料隱私保護

刊登期別
2005年01月
 

※ 行動定位服務中的位置資料隱私保護, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=794&no=0&tp=1 (最後瀏覽日:2025/12/10)
引註此篇文章
你可能還會想看
日本農業數據利用的瓶頸與農業數據平台WAGRI的誕生

  日本從事農業者高齡少子化以致後繼無人,農業ICT(Information and Communication Technology)可使資深農民內隱知識外顯化而利於經驗傳承,例如已有地區透過除草機器人、自動運行農機等ICT農機,蒐集稻米收穫質量之數據進行分析,實作出施肥最適條件的成功案例。   然而成功案例之數據利用,延伸至其他地區實踐時卻顯得窒礙難行。首先是成本面,農場計測溫溼度等數據之感測器的設置、管理維護與通信等成本負擔,宛如藏寶洞前豎立之石門,不得其門而入。另一造門磚是農機或感測器等不同業者之系統服務互不相容,且數據無法互換共用,為求最適合特定地區與農作物之農業ICT組合,且能移植成功案例至其他地區,系統相容數據共用亦是當務之急。   日本農業數據協作平台(簡稱WAGRI),可為大喊芝麻開門之鑰,日本於2017年內閣府計畫支持下,由農業生產法人、農機製造商、ICT供應商、大學與研究機關等組成聯盟,一同建置具備「合作」(打破系統隔閡使數據得以相容互換)、「共有」(數據由提供者選定分享方式)、「提供」(由公私部門提供土壤、氣象等數據)三大功能之WAGRI,今年已有實作案例指出,活用WAGRI後,在數據蒐集與利用上的勞力與時間成本明顯縮減。   台灣農業同樣面臨高齡化、傳承之困境,日本WAGRI整合與共享數據的模式可作為我國發展農業ICT活用數據之參考。

何謂「大學技術經理人協會(AUTM)」?

  大學技術經理人協會( The Association of University Technology Managers, AUTM)是一個專門贊助並增進全球學術科技移轉的非營利組織,成立於1974年,其前身為大學專利管理協會(Society Of University Patents Administrators),至今已經擁有超過3000位來自超過300間大學技術轉移室的經理人成為會員,為美國產學合作的重要組織。   該協會運作之目的為充實成員對於技術轉移的知識、贊助技術轉移活動的進行、增進產業及學界的合作與交流,以及打造友善的跨國技轉環境。   該協會每年對美國及加拿大的大學、教學醫院,以及研究機構進行問卷調查,以了解各大學級研究機構的技術授權情形,並發布年度授權活動調查報告 (AUTM Licensing Activity Surveys)。其亦每年舉辦年會,提供來自全美各地的大學、研究機構、營利及非營利組織,以及全球對技術轉移議題有興趣的單位一個資訊交流的場合,會中除了舉辦針對技術轉移議題的研討會以外,並會提供相關企業或組織展示其技術移轉之服務及成果的機會,提供與會者認識技術移轉之世界趨勢的機會。

RFID應用與相關法制問題研析-個人資料在商業應用上的界限

歐盟執委會提出「具可信度之人工智慧倫理指引」

  歐盟執委會人工智慧高級專家小組(High-Level Expert Group on Artificial Intelligence)於2019年4月8日公布「具可信度之人工智慧倫理指引」(Ethics Guidelines For Trustworthy AI)。該指引首先指出,具可信度之人工智慧需具備三個關鍵特徵:(1)合法(Lawful):應遵守所有適用於人工智慧之法規;(2)合乎倫理(Ethical):確保人工智慧符合倫理原則與價值;(3)健全(Robust):自技術與社會層面觀之,避免人工智慧於無意間造成傷害。   該指引並進一步指出人工智慧應遵守以下四項倫理原則: (1) 尊重人類之自主權(Respect for Human Autonomy):歐盟之核心價值在於尊重人類之自由與自主,與人工智慧系統互動之個人,仍應享有充分且有效之自我決定空間。因此,人工智慧之運用,不應脅迫、欺騙或操縱人類,人工智慧應被設計為輔助與增強人類之社會文化技能與認知。 (2) 避免傷害(Prevention of Harm):人工智慧不應對人類造成不利之影響,亦不應加劇既有的衝突或傷害。人工智慧之系統運行環境應具備安全性,技術上則應健全,且確保不會被惡意濫用。此外,弱勢族群應於人工智慧運用中受到更多關注,並被視為服務對象。 (3) 公平(Fairness):人工智慧系統之開發、布建與利用,必須具備公平性。除了透過實質承諾與規範,進行平等與公正之利益與成本分配外,亦須透過救濟程序確保個人或特定族群不受到歧視與偏見之侵害,並可對人工智慧之自動化決策結果提出質疑,且獲得有效之補救。 (4) 可解釋性(Explicability):人工智慧應盡量避免黑箱(Black Box)決策,其系統處理程序須公開透明,並盡可能使相關決策結果具備可解釋性,分析特定訊息可能導致之決策結果,此外亦需具備可溯性且可接受審核。

TOP