Connected Industries為日本產業的未來願景,透過人、機器與科技的跨界連接,創造出全新附加價值的產業社會,以達到Society5.0理想目標。例如,物與物的連接形成物聯網(IoT)、人與機器合作拓展智慧與創新、跨國企業合作解決全球議題、跨世代的人與人連繫傳承智慧與技術、生產者與消費者接觸解決商業與社會問題等。
隨著第四次產業革命到來,IoT、大數據及 AI人工製會等技術革新,日本藉由高科技、技術人才及應變能力等優勢與數據技術相結合,目標是邁向以人類為中心、解決問題的新產業社會。Connected Industries的三大支柱分別為:
一、新數據社會(New Digital Society)
消除人與機械系統的對立,實現全新的數位化社會。解決新興科學技術如AI及機器人運用上的困難,並積極活用該技術幫助並強化人類解決問題的能力。
二、多層次合作(Multilevel Cooperation)
區域、世界及全球未來面臨複雜的挑戰,必須透過企業間、產業間及國與國間的連繫合作解決課題。
三、人力資源發展(Human Resource Development)
以人類為中心做思考,積極推展數據技術的人才養成,邁向智慧與技術的數據化時代。
本文為「經濟部產業技術司科技專案成果」
根據歐盟執委會(European Commission)之聯合研究中心(Joint Research Centre, JRC)於今(2012)年初針對歐盟境內之1000間企業所做的「歐盟產業研發投資趨勢調查」(The EU Survey on R&D Investment Business Trends)結果指出,目前歐盟境內之頂尖企業期待自2012年至2014年止,以每年平均4%的成長率投注資源於研究發展領域。 儘管目前全球經濟局勢仍不明朗,多數的歐盟企業依舊認為,投注研究發展乃為企業追求未來成長和繁榮的重要關鍵要素。而該現象主要於軟體和電腦服務產業最為明顯。除了企業自身投注研發資源以進行創新研發、市場調查、和新產品的推行等相關活動外,多數的企業亦認為藉由國家補助經費、成立公私部門夥伴合作模式,此類外部激勵方式對於企業創新活動的進行,具有相當之助益。此外,透過簽署各項合作協議,企業與學研機構間得以相互授權合作,進而促進知識分享,此皆目前強調開放式創新(open innovation)概念的具體實踐之例,實值得肯認。然而,歐盟企業亦普遍認為,現行歐盟智慧財產權機制仍有智慧財產權保護申請時程過長,以及申請智慧財產權保護所需費用過於昂貴等不足之處,而該不足之處乃為目前歐盟企業進行創新研發活動時的絆腳石。 如何促進企業之創新研發能力,乃為目前全球各國於規劃推動各項相關策略時之主要討論標的之一。儘管當前歐盟智慧財產機制仍有待改善之處,然就歐盟企業所肯認之跨機關構合作模式、合作協議之簽署、國家經費之補助等措施,仍值得進行進一步的探討與觀察。
歐盟議會發布《可信賴人工智慧倫理準則》2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。
美國發布2012「更佳建築倡議」計畫進度報告美國於2011年2月份啟動「更佳建築倡議」(Better Building Initiative)計劃,期在2020年達成降低工業和商業之能源密集度百分之二十的目標。展望2013年,美國能源部於2012年底發布該倡議之進度報告(Progress Report)。報告開宗明義指出若干有礙建築能源效率之投資障礙,擬如下: (1) 尚缺少能源效率投資成本節省之實證數據 (2) 尚缺少潛在市場和技術解決方案之相關資訊 (3) 能源效率作為商業最佳實踐尚未普遍被接受。基此,能源部致力於發展以下策略: (1) 創新產業研發 (2)促進能源效率投資 (3) 培育清潔能源之技術人員 (4) 強化聯邦公部門示範作用。 在創新產業研發面向,能源部成立「更佳建築聯盟」(Better Buildings Alliance),此乃結合零售、食品、商業房地產、醫療照護、高等教育產業,預計於2013年將擴大到州和地方層級;聯盟成員將承諾設定節能目標,擇定高效率之建築科技進行採購。其次,在促進能源效率投資上,報告指出,因市場尚缺乏相關數據資訊(data information),難就能源效率之市場價值(value)進行驗證;將建立起相關機制,作為未來融資和建築物改善的基礎。最後,在強化公部門示範作用上,透過聯邦能源管理計畫(Federal Energy Management Program, FEMP)和節能績效契約(Energy Savings Performance Contract, ESPC),持續強化能源技術服務公司(Energy Service Companies, ESCO)進行聯邦建築物節能效益之提升和擔保。 綜上,可得知建築能源效率數據資訊之欠缺乃目前美國能源部在推展「更佳建築倡議」面臨的最大問題。查美國國會於2012年12月初通過「美國製造業能源技術修正法案」(American Energy Manufacturing Technical Corrections Act),就前述聯邦能源管理計畫(FEMP)和資料蒐集標準(Data Collection)進行規範,相關法制政策趨勢殊值注意。
日本垃圾電郵法制2005年修正動態