Connected Industries為日本產業的未來願景,透過人、機器與科技的跨界連接,創造出全新附加價值的產業社會,以達到Society5.0理想目標。例如,物與物的連接形成物聯網(IoT)、人與機器合作拓展智慧與創新、跨國企業合作解決全球議題、跨世代的人與人連繫傳承智慧與技術、生產者與消費者接觸解決商業與社會問題等。
隨著第四次產業革命到來,IoT、大數據及 AI人工製會等技術革新,日本藉由高科技、技術人才及應變能力等優勢與數據技術相結合,目標是邁向以人類為中心、解決問題的新產業社會。Connected Industries的三大支柱分別為:
一、新數據社會(New Digital Society)
消除人與機械系統的對立,實現全新的數位化社會。解決新興科學技術如AI及機器人運用上的困難,並積極活用該技術幫助並強化人類解決問題的能力。
二、多層次合作(Multilevel Cooperation)
區域、世界及全球未來面臨複雜的挑戰,必須透過企業間、產業間及國與國間的連繫合作解決課題。
三、人力資源發展(Human Resource Development)
以人類為中心做思考,積極推展數據技術的人才養成,邁向智慧與技術的數據化時代。
本文為「經濟部產業技術司科技專案成果」
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
中國最大搜尋引擎簽署知識產權網路侵權協議創意產業之發展在中國,具有相當之重要性。在出版物、音樂、電影、電視和遊戲軟件開發等創意相關產業,已占中國GDP 5%以上。2016年4月中國最大的搜尋引擎公司「百度」與國際出版商版權保護聯盟(IPCC)簽署版權保護合作備忘錄。IPCC為多間國際出版公司參與的非營利性組織,由於侵權盜版行為再中國日益嚴重,IPCC積極的向中國國內的網路平台公司洽談合作意願。 中國百度為了減少網路侵權作品的擴散,透過技術在作品原創性、正版與維權上,開發防盜版系統及線上投訴管道。百度公司與IPCC透過定期的資訊交流,除了在版權保護上合作,雙方也將繼續針對搜尋內容之正版化合作,此舉提升百度搜尋引擎在內容上的豐富性,同時也意味著中國在知識產權上更向前了一步。 IPCC除了與百度簽署版權保護協議外,也針對網路上具有侵權之網站應列表與仿冒品之跨境執法問題上提出意見交流。另外在政策面上,針對涉及中國正在進行的著作權修法議題,包括著作權集中授權、藝術家之轉售權、著作權的例外與限制及音樂視聽著作權進行討論。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
美國通過基礎建設法案,加密貨幣之交易資訊應向國家稅務局申報於美國時間2021年11月15日,基礎建設法案(Infrastructure Investment and Jobs Act,以下稱基建法案)由美國總統拜登(Joe Biden)簽署後正式成為法律。依據白宮聲明,該法案旨在提供工作機會,改善港口與運輸以改善供應鏈,及其他關於美國基礎建設的投資等。此外該法案內容因涉及加密貨幣交易資訊申報議題,受到加密貨幣產業眾多矚目。 基建法案與加密貨幣產業有關者,主要是在美國國內稅收法典(Internal Revenue Code of 1986)第6050I與第6045條之既有規定中,分別將交易標的現金之定義新增數位資產(Digital Asset),及新增經紀商(Broker)之申報義務。所謂數位資產係以數位方式表彰一定價值,並透過加密保全的分散式帳本或其他類似技術所記錄之資產。經紀商認定範圍新增包括「關於任何為獲得報酬,而負責定期提供任何服務,代表他人實現數位資產轉移者」。法規生效後,任何價值超過10,000美元之交易訊息(諸如交易者姓名、社會安全號碼等資訊)應申報至美國國家稅務局(IRS),經紀商亦被要求申報其所經手交易至美國國家稅務局,新規範將適用於2023年12月31日後所應依法申報之文件。 區塊鏈技術去中心化的特性讓加密貨幣交易得以匿名化方式進行,然而新法一概將價值超過10,000美元的交易納入申報範圍。有論者認為,對於未建立身分驗證機制之小型平台業者、礦工以及散戶等經紀商或交易人,如何調整去匿名化之交易模式以遵循申報義務之法令,將是一大挑戰。綜上,新規範揭示政府將深化對於加密貨幣產業之監管,如何兼顧交易自由與交易秩序,將考驗著監管當局及業者之智慧。
法國CNIL認Google於Gmail中投放之偽裝廣告及個人化廣告因欠缺當事人有效同意而違法,開罰3.25億歐元法國國家資訊與自由委員會(Commission Nationale de l’Informatique et des Libertés, CNIL)於2025年9月1日針對一起由歐洲數位權利中心(noyb - The European Center for Digital Rights)提出的申訴做成決議,指Google未經Gmail使用者同意,將廣告偽裝為電子郵件進行「偽裝廣告」(Disguised Ads)投放,以及在對Gmail使用者投放個人化廣告前,未能於Gmail帳號申請流程中提供當事人提供較少cookies、選擇非個人化之通用廣告(generic ads)的選項,違反了《電子通訊法》(code des postes et des communications électroniques)與《資訊與自由法》(loi Informatique et Libertés)中關於歐盟《電子隱私指令》(ePrivacy Directive)之施行規定,對Google裁處了3.25億歐元的罰鍰,並要求改善。以下節錄摘要該裁決之重點: 一、 偽裝成電子郵件的偽裝廣告與電子郵件廣告均須獲當事人同意始得投放 歐盟《電子隱私指令》第13條1項及法國《電子通訊法》規定,電子郵件直接推銷(direct marketing)僅在其目標是已事先給予同意的使用者時被允許。CNIL,依循歐盟法院(CJEU)判例法(C-102/20)見解,認為若廣告訊息被展示在收件匣中,且形式類似真實電子郵件,與真實電子郵件相同位置,則應被認為是電子郵件直接推銷,須得到當事人之事前同意。因此,CNIL認定偽裝廣告即便技術上不是狹義的電子郵件,僅僅因其在通常專門用於私人電子郵件的空間中展示,就足以認為這些廣告是透過使用者電子郵件收件匣傳遞的廣告,屬於電子郵件廣告,而與出現在郵件列表旁邊且獨立分開的廣告横幅不同,後者非屬電子郵件廣告。 二、 Cookie Wall下當事人的有效同意:「廣告類型」的選擇、服務申請流程的隱私設計與資訊透明 CNIL參酌歐盟個人資料保護委員會(European Data Protection Board, EDPB)第2024/08號關於「同意與付費模式」意見,認為同意接受廣告在特定條件下得作為使用Gmail服務的條件。換言之,以「cookie wall」(註:拒絕cookie的蒐集即無法獲得服務之網站設計)取得之當事人「同意」,非當然不自由或無效。CNIL認為,在免費服務的框架下,cookie wall在維持提供服務與服務成本之間的經濟平衡上,要求服務申請者須接受投放廣告的cookie是合法的。惟CNIL認為,這不代表Google可以任意決定所蒐集的cookies和相應廣告模式的類型。 CNIL要求,當事人在cookie wall的框架內仍應享有選擇自由,才能取得蒐集為投放個人化廣告之cookies的當事人有效同意,亦即:在個人化廣告處理更多個資和對當事人造成更多風險的情況下,當事人應被給予機會選擇「等值的替代選項」,亦即通用廣告,並完全且清晰地了解其選擇的價值、範圍及後果。 然而,CNIL發現,Google將與廣告個性化相關的cookies拒絕機制設計得比接受機制更複雜,實際上阻礙了使用者拒絕隱私干預程度更高的cookies。這種拒絕途徑偏袒了允許個人化廣告的cookies的同意,從而影響了當事人的選擇自由。CNIL也發現,Google從未以明確方式告知使用者建立Gmail帳戶時面臨cookie wall,以及對此使用者享有甚麼選擇,而其提供的資訊更引導使用者選擇個人化廣告,導致選擇一般廣告的機會遭到犧牲。 三、 為何不是愛爾蘭資料保護委員會(Data Protection Commission, DPC)管轄? GDPR設有「單一窗口機制」,依據該合作機制,對Google進行的GDPR調查,應由作為主任監管機關(Lead Supervisory Authority)的愛爾蘭DPC管轄。惟在本案,CNIL認為並不適用於單一窗口機制。因為與cookies使用及電子推銷相關的處理並非屬於GDPR範疇,而是適用電子隱私指令,CNIL對法國境內的cookies使用及電子推銷處理享有管轄權。此爭議反映出即便GDPR旨在確保標準化單一市場內的數位管制,但尚不足以弭平成員國間監管強度之差異。