Connected Industries為日本產業的未來願景,透過人、機器與科技的跨界連接,創造出全新附加價值的產業社會,以達到Society5.0理想目標。例如,物與物的連接形成物聯網(IoT)、人與機器合作拓展智慧與創新、跨國企業合作解決全球議題、跨世代的人與人連繫傳承智慧與技術、生產者與消費者接觸解決商業與社會問題等。
隨著第四次產業革命到來,IoT、大數據及 AI人工製會等技術革新,日本藉由高科技、技術人才及應變能力等優勢與數據技術相結合,目標是邁向以人類為中心、解決問題的新產業社會。Connected Industries的三大支柱分別為:
一、新數據社會(New Digital Society)
消除人與機械系統的對立,實現全新的數位化社會。解決新興科學技術如AI及機器人運用上的困難,並積極活用該技術幫助並強化人類解決問題的能力。
二、多層次合作(Multilevel Cooperation)
區域、世界及全球未來面臨複雜的挑戰,必須透過企業間、產業間及國與國間的連繫合作解決課題。
三、人力資源發展(Human Resource Development)
以人類為中心做思考,積極推展數據技術的人才養成,邁向智慧與技術的數據化時代。
本文為「經濟部產業技術司科技專案成果」
繼美國聯邦巡迴上訴法院於2009年底於The Forest Group Inc v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292條中關於不實專利標示(false patent marking)的罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎,並將原案發回地方法院(the U.S. District Court for the Southern District of Texas)重審後,地方法院於今年4月27日裁定基於專利法第292條具懲罰性之本質,針對標示錯誤或標示無效專利號之產品之罰金應以該產品之最高售價而非被告基於販售該產品所獲得之利潤或經濟利益來計算。 於此案中,The Forest Group產品之售價介於美金 $103至 $180元間,法院因而裁定處以The Forest Group每一標示錯誤專利資訊產品 $180元之罰金。 Atlas 法官提到藉由將標示不實專利資訊者處以該產品之最高售價之罰金,The Forest Group所需賠償之罰金將超過其藉由販售該產品所獲取之利益,達到第292條遏制之目的。 預計此案之判決將對其他地方法院於處理類似案件之判定產生引響,尤其對那些將錯誤專利資訊標示在大量產品上的被告而言。此外,正如各界所預料,繼去年聯邦巡迴上訴法院對第292條提出罰金計算基礎之解釋後,提起相關訴訟案件之數量已大量提升,至今已累積約140案。另,聯邦巡迴上訴法院亦剛於6月10日於Pequignot v. Solo Cup 一案中針對標示過期專利、舉證責任等與第292條相關之爭議做出解釋,後續效應直得企業持續關注。
美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。
新加坡金融管理局發布《資料治理與管理實務》資訊文件新加坡金融管理局(Monetary Authority of Singapore,下文簡稱MAS)於2024年5月29日發布《資料治理與管理實務》(Data Governance and Management Practices: Observations and Supervisory Expectations From Thematic Inspections)文件。此文件係根據MAS於2022年至2023年期間針對國內系統性重要銀行(Domestic Systemically Important Banks,下文簡稱D-SIBs)進行「資料治理與管理架構」的主題式檢查結果加以研究與分析而作成,其內容包含MAS對於資料治理的期望、受檢銀行的優良實踐範例及缺失,希望未參與檢查的銀行與金融機構也能根據這份文件進行適當的改善措施。 MAS在《資料治理與管理實務》文件中提出關於五大主題的監管期待,簡要說明如下: 1.董事會和高階管理層的監督: 董事會和高階管理層應加強監督資料治理。例如,定期向董事會報告資料管理領域的重要問題;高階管理層應即時獲得準確且完整的相關資訊,並對資料風險進行分析。 2.設置資料管理單位: 銀行應建立資料管理單位,並為資料管理辦公室提供明確的任務授權,以利其監測資料的品質。 3.資料品質之管理與控制: 銀行應建立資料品質管理架構與流程,以確保資料在整個生命週期中是有品質的。例如,建立有效控制資料流的機制;建立資料品質指標或計分卡;使用終端使用者運算工具(end-user computing tools)處理資料時,應納入風險評估和控制架構來管理。 4.資料品質控制資料之問題識別與升級: 銀行應制定升級標準和行動計畫,以改善資料品質。另外MAS也建議銀行應該要有強大且完整的資料譜系(data lineage)來辨識資料問題並將之改善。 5.BCBS 239原則之擴大適用:BCBS 239原則係巴賽爾銀行監理委員會(the Basel Committee on Banking Supervision)第239號規範:《有效風險資料聚合及風險報告原則》(Principles for effective risk data aggregation and risk reporting),適用於全球的系統性重要銀行(Global Systemically Important Banks),巴賽爾銀行監理委員會同時建議D-SIBs宜遵循此原則,因此MAS亦要求新加坡境內7家D-SIBs須遵守BCBS 239原則的相關規範。此外,MAS仍期待各銀行與金融機構可以擴大BCBS 239原則的適用範圍,例如在範圍內報告(in-scope reports,或稱主要風險報告)中納入反洗錢、稅務管理等面向。由於金融服務是一個由資料驅動的產業,資料已然是金融業重要的戰略資產。MAS期盼這份文件能夠讓所有銀行及金融機構提升其資料治理能力,並針對內部的問題進行改善。
英國將以NHS基因體醫學服務續行十萬基因體計畫英國政府所提出的「10萬基因體計畫(100,000 Genomes Project)」將於2018年底達成目標,而將以NHS基因體醫學服務(NHS Genomic Medicine Service)作為續行計畫,以促進個人化醫療的發展。 NHS基因體醫療服務的目的在於促進罕見疾病與癌症的診斷以及患者治療的效率,並預期在未來5年達到五百萬組基因定序,以提供具備全面性(comprehensive)以及公正性(equitable)的基因檢測。為達此目的,NHS基因體醫療服務包含5個主要內涵:連結基因體研究中心以成立國家基因體實驗室服務(national genomic laboratory service)、新的國家基因體實驗室檢測文庫(new National Genomic Test Directory)、全基因體定序的相關規範,並與英國基因體公司(Genomic England)合作開發資訊基礎設施(informatics infrastructure)、臨床基因體醫學服務(clinical genomics medicine services)以及發展基因體醫學中心服務(Genomic Medicine Centre service)、NHS負擔統合性的監管職責。 在以NHS基因體醫療服務作為續行計畫的狀況下,若合格的研發人員欲以患者的基因資料進行新藥或是新治療方式的開發需事先取得患者的同意。另外,從2019年開始,全基因定序將被納入特定患者的治療過程中,如罹患特定罕見疾病或具有治癒困難性的成年患者以及所有患有嚴重疾病的孩童患者,以加速疾病的診斷以及減少侵入性治療的次數。