Connected Industries為日本產業的未來願景,透過人、機器與科技的跨界連接,創造出全新附加價值的產業社會,以達到Society5.0理想目標。例如,物與物的連接形成物聯網(IoT)、人與機器合作拓展智慧與創新、跨國企業合作解決全球議題、跨世代的人與人連繫傳承智慧與技術、生產者與消費者接觸解決商業與社會問題等。
隨著第四次產業革命到來,IoT、大數據及 AI人工製會等技術革新,日本藉由高科技、技術人才及應變能力等優勢與數據技術相結合,目標是邁向以人類為中心、解決問題的新產業社會。Connected Industries的三大支柱分別為:
一、新數據社會(New Digital Society)
消除人與機械系統的對立,實現全新的數位化社會。解決新興科學技術如AI及機器人運用上的困難,並積極活用該技術幫助並強化人類解決問題的能力。
二、多層次合作(Multilevel Cooperation)
區域、世界及全球未來面臨複雜的挑戰,必須透過企業間、產業間及國與國間的連繫合作解決課題。
三、人力資源發展(Human Resource Development)
以人類為中心做思考,積極推展數據技術的人才養成,邁向智慧與技術的數據化時代。
本文為「經濟部產業技術司科技專案成果」
低軌通訊衛星發展及應用之法制觀察 資訊工業策進會科技法律研究所 2022年04月25日 壹、事件摘要 隨著太空領域的技術突破,國際間主要國家已將焦點轉向太空場域,未來各類型太空商業活動及軍事性部署將大幅增加。低軌衛星(Low Earth Orbit Satellite)商業化發展趨勢最為明確[1],其所涉及的法制規範受到高度關注,對於國家如何承擔作為太空活動主體的國家責任,尤其是太空物體發射活動之風險控管、損害賠償責任問題,以及善盡減少太空碎片之國際義務等;此外,較為成熟的低軌衛星通訊服務,國際業者如SpaceX、OneWeb正積極於全球部署,則通訊傳播監管規範宜如何調適,亦為觀察重點。 本文以低軌通訊衛星發展及應用為核心,爬梳相關法制,面向涵蓋從火箭發射階段至衛星營運階段,說明其間涉及的活動規範之法制發展重點,以及供應鏈安全管理的議題,以供我國法規調適之參考。 貳、重點說明 一、發射階段 在衛星發射階段,主要涉及之國際太空法[2]為《登記公約》及《責任公約》,締約國必須遵守公約規定並善盡監管責任,是以美國、英國及日本對太空活動皆有嚴謹的許可審查制度[3]。一般而言,發射階段的審查通常分為「發射載具」及「太空載具」兩種,前者著重技術安全性的審查,避免發射過程中對他人造成損害,因此火箭發射業者必須盡可能採取相關安全措施,讓風險降至最低,而國家的角色則是評估該發射活動落於可接受的風險後,始可同意其施行。後者對於太空載具的審查,除了人造衛星本身的安全性之外,尚須說明該衛星之用途及設計,如是否會供軍事使用、若有核能之使用是否安全、是否符合國際無線電頻率秩序,以避免於外太空中造成危害或干涉到其他的人造衛星等。 除了太空五大公約之外,隨著太空活動的增加,尚有其他參考準則之提出,如2007年聯合國大會決議通過「太空碎片減緩指引」(Space Debris Mitigation Guidelines),該指引為自律性參考文件,並不具有國際法的法律拘束力,其建議在任務規劃、設計、製造發射火箭之飛行任務,應將太空碎片減緩措施納入考量[4]。美國聯邦通訊委員會(Federal Communications Commission, FCC)亦有提出其「太空碎片緩解政策與法令遵循指導」,以避免大量的低軌通訊衛星在結束任務後成為太空垃圾[5]。 我國已於2021年5月31日立法通過《太空發展法》,該法參照國際太空法規範,建立國家行政管理之法制基礎,特別是《登記公約》之太空載具登錄及許可規範;以及《責任公約》之太空事故損害賠償責任及保險制度等。至於太空活動之侵權案件,國際太空法係以國家為主體,無論是作為求償國或是被求償國,我國如何參與國際爭端解決,將有待實務觀察。 二、營運階段 (一)國際頻率協調 通訊衛星使用的無線電及微波的頻段較寬,為了避免訊號干擾,係由國際電信聯盟(International Telecommunication Union, ITU)依據無線電規則(Radio Regulation),協助無線電頻率分配及跨國頻率協調。 我國非ITU會員國,過往實務係以折衷方式參與國際頻率協調,如中華電信之中新一號及中新二號,採取與新加坡電信合作模式,爭取衛星通訊之營運機會;而科研用途之衛星可循專為科學研究及實驗之特殊保留頻段,可透過ITU下非官方機構組成的太空頻率協調小組(Space Frequency Coordination Group, SFCG)協調國際間科研使用頻段;或是透過國際業餘無線電聯盟(International Amateur Radio Union, IARU),取得頻率協調證明文件。 惟對於商用通訊衛星,因其需要供商業使用之專用頻譜,並且排除他人之干擾,仍必須透過ITU與他國進行頻率協調交涉並完成使用登記,始可提供衛星通訊服務。 (二)衛星通訊服務涉及之法規調適 通訊傳播服務屬於高度監管的行業,業者必須遵循電信管理法規之要求,始可於境內提供服務。我國已新增10.7-12.7GHz、13.75-14.5GHz、17.7-20.2GHz及27.5-30.0GHz等頻段供衛星通訊使用[6],惟申請人資格必須符合外資持股上限,即外國人直接持有股份總數不得超過49%,直接及間接持有股份總數不得超過60%[7]。法制政策上若欲放寬外資持股限制,則必須加以修法。另一途徑,國際衛星業者亦可透過具有衛星業務執照之國內業者代理申請,目前實務上中華電信已於2021年8月宣布與Starlink展開合作,可能協助代理Starlink的衛星通訊服務並在臺販售[8]。 之後衛星通訊服務的討論焦點可能會是「衛星間鏈路」(Inter Satellite Links, ISL)的應用,即允許資料在衛星之間傳輸及交換,無需再另外設置地面閘道站(gateway),而讓境內資料直接傳輸至外國。我國現行制度係外國業者在提交經營許可之申請時,自行承諾、遵守我國通訊監察之要求及義務。一旦衛星通訊服務盛行,是否會對國家主權之通傳監理產生挑戰,如通訊監察之資料調取協助義務、資料落地管理等,有待持續觀察[9]。 三、系統及零組件之資安管理 目前國際間僅有美國訂定衛星通訊之網路安全要求,惟其係針對軍事應用之衛星通訊,並非全面性之要求[10]。我國亦未對衛星的資通安全有相關的強制性規範,實務上衛星供應鏈業者主要是因應品牌商代工規格之要求,進行生產。是以,對於商用性低軌衛星通訊服務,現階段或許能參考5G行動通訊之共通適用原則,如供應鏈安全、資通安全維護計畫等。 參、事件評析 為了掌握太空產業商機,特別是現階段可預期的低軌通訊衛星的發展,我國相關的法制政策宜迎合產業需要,並促進各種太空活動的創新應用,以厚植人才與技術能量。 首先,在發射階段部分,我國《太空發展法》對於太空活動之監管與權利義務分配,已建立了法制基盤,本文認為後續細部的法制監管密度宜配合產業成熟程度加以定之。申言之,在初期發展過程,太空活動之監管似不宜課予過高的義務及責任,避免商業性太空活動之利害關係人望之卻步,建議以軟性方式,例如透過獎勵或輔導等途徑,促進業者符合太空碎片減量或其他環境保護之要求,待國內發射能量累積後,再採取拘束性規範並執行嚴格管理。 其次,在營運階段部分,國內產學界皆希望我國商業性太空活動能在國際間有所突破,惟受限於ITU國際頻率協調之困境,建議短期內宜推廣與外國合作的模式,政策上宜協助媒合國內設備元件業者與外國衛星所有者,以進入國際太空產業供應鏈。長期而言,商用衛星服務的經營仍需要透過ITU進行國際頻率協調,因此仍需動員外交力量,協助商用衛星拓展可行的頻率協調途徑。至於國際低軌衛星業者於我國落地提供服務部分,必須符合現行通傳法制規範,如取得公眾電信網路之使用核准、頻譜使用申請等,後續電信主管機關宜觀察ISL技術的使用情況、國際間對於衛星數據傳輸之要求,以及是否要求於境內設置閘道站等,以掌握對衛星網路之監管。 最後,在系統及零組件資安管理部分,由於國際間對於衛星網路技術標準仍在討論中,宜待國際間衛星資安標準形成,再據以制定相關規範。值得注意的是,衛星通訊網路為電信業之一環,屬於我國關鍵基礎設施領域並為《資通安全管理法》納管範圍,故其仍需遵守該法課予之高規格的安全標準,即衛星服務營運商應盡可能使用安全供應鏈及避免高風險設備,並從設計面納入資安考量。 [1] 低軌衛星係指佈署於低軌道之衛星,一般而言距離地球高度約160至2,000公里,相對於中軌道衛星、地球同步軌道衛星,低軌衛星離地球距離較近,因此傳輸延遲較短、功率耗損較少,進而可有效實現全球網路覆蓋。參考自楊可歆,〈低軌衛星於行動通訊業務之應用場景分析〉,MIC產業研究報告,2020/05/18, https://mic.iii.org.tw/aisp/Reports.aspx?id=CDOC20200507001 (最後瀏覽日:2022/03/31)。 [2] 目前國際太空法包括五大公約,分別為1967年《外太空條約》(Outer Space Treaty)、1967年《營救協定》(Rescue Agreement)、1971年《責任公約》(Liability Convention)、1974年《登記公約》(Registration Convention)及1979年《月球協定》(Moon Treaty)。 [3] 美國規範於《商業太空發射法》(Commercial Space Launch Act),可見於https://uscode.house.gov/view.xhtml?path=/prelim@title51/subtitle5/chapter509&edition=prelim (最後瀏覽日:2022/03/15);英國規範於《外太空法》(Outer Space Act),可見於https://www.legislation.gov.uk/ukpga/1986/38/contents (最後瀏覽日:2022/03/15);日本規範於《太空活動法》(宇宙活動法),可見於https://www8.cao.go.jp/space/english/activity/documents/space_activity_act.pdf (最後瀏覽日:2022/03/15)。 [4] UNOOSA, Space Debris Mitigation Guidelines of the Committee on the Peaceful Uses of Outer Space, 2010, https://www.unoosa.org/pdf/publications/st_space_49E.pdf (last visited Apr. 06, 2022). [5] FCC, Mitigation of Orbital Debris in the New Space Age, IB Docket No. 18-313, Apr. 02, 2020, https://docs.fcc.gov/public/attachments/DOC-363486A1.pdf (last visited Apr. 06, 2022). [6] 彭慧明,〈低軌衛星頻譜 6月開放申請〉,經濟日報,2022/03/24,https://udn.com/news/story/7240/6187130 (最後瀏覽日:2022/04/14)。 [7] 《電信管理法》第36條第4項及第5項 [8] 張瑞益,〈中華電、Starlink攜手合作 搶低軌道衛星商機〉,經濟日報,2021/08/30,https://udn.com/news/story/7240/5708752 (最後瀏覽日:2022/03/14)。 [9] Larry Press, Are Inter-Satellite Laser Links a Bug or a Feature of ISP Constellations?, CIRCLEID, Apr. 03, 2019, https://circleid.com/posts/20190403_inter_satellite_laser_links_bug_or_feature_of_isp_constellations/?fbclid=IwAR2iQEgPCm-ACC8kwvRaMDZPxCxLehHKvWvAn8tkr0njn8TubUTM_cLsIc4 (last visited Mar. 31, 2022). [10] 謝宜庭,〈美國白宮頒布有關於太空系統的網路安全原則《太空政策第5號指令》〉,資策會科技法律研究所,2021年4月,https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&d=8629 (最後瀏覽日:2022/03/14)。
美國加州公共事業委員會提出自動駕駛車輛試點計畫加州公共事業委員會(California Public Utilities Commission, CPUC)提出自駕車試點計畫,允許在未有配置人類駕駛之情況下測試自駕車,此次計畫包含兩個試點項目,將於5月被五人委員會審核,並決定是否批准。 第一個試點項目允許參與廠商之自駕車上路測試,並須配置經培訓的人類駕駛於自駕車內,以應付隨時的突發狀況;第二個試點項目則允許無人駕駛之自駕車上路測試,惟在無人類駕駛隨車之情況,必須符合加州機動車輛管理局(Department of Motor Vehicles, DMV)之規定,如遠端監控車輛狀態及操作,以保障乘客安全。 參與廠商必須定期向CPUC及DMV繳交營運報告,包含測試期間車輛碰撞(collision)及解除自動駕駛(disengagement)次數。 此次試點計畫已開放廠商申請,科技大廠及叫車服務公司如Google、Tesla、Uber以及Lyft等目前亦已正進行自駕車之設計與測試。若此提案通過,CPUC將進一步規劃自駕車載客服務之相關辦法,使自駕車測試之法制更臻完善。
英國發布「科學技術框架」2024最新施政進度,積極推動創新技術發展英國科技創新部(Department for Science, Innovation & Technology, DSIT)於2024年2月9日發布「科學技術框架」(Science and Technology Framework)最新施政進度,相關重點如下: (1)此框架旨在強化國家科技競爭力,聚焦五項關鍵技術領域:人工智慧、工程生物學、未來通訊、半導體和量子技術。 (2)擬實現十項關鍵措施:辨識關鍵技術、對國內外展示英國科技實力,吸引優秀人才及投資、促進公私部門投資新興科技、發揮英國多樣化技能、技術和創業人才優勢、為新創產業提供資金補助、促進公部門採購轉型、戰略性參與國際事務提升話語權、建立數位基礎設施優化研發環境、制定創新法規與全球標準、鼓勵公共部門建立支持創新文化,改善服務等。 (3)提出五大戰略領域發展策略,並由「英國研究創新(UK Research and Innovation, UKRI)資金」鉅額資助,並吸引私部門企業、慈善單位共同投資。 (4)提出「支持創新技術監管建議」(Recommendations from the Pro-innovation Regulation of Technologies Review):由政府首席科學顧問群對跨領域前沿技術、先進製造、創意產業、生命科學、數位技術及綠色產業等領域提出監管建議。 (5)推動「退休基金改革措施」(Mansion House Reforms):於2023年7月10日提出,政府支持運用退休金投資創新企業,除可提高退休金持有人之收益外,亦增加新創資金流動性,並促其於英國設立公司及上市。
WHO公布實施遠距醫療綜合指引COVID-19大流行對公共衛生保健服務施加了巨大壓力,同時限制了實體醫療服務的近用,引起人們對實施或擴大實施遠距醫療(Telemedicine)的極大興趣。為了對應全球對遠距醫療服務的增長,世界衛生組織(World Health Organization , WHO)於今(2022)年11月9日發布《實施遠距醫療綜合指引》(Consolidated Telemedicine Implementation Guide),以幫助政策制定者、決策者與實行者設計與監管遠距醫療之實施。 遠距醫療,涉及使用數位科技來克服公衛服務的距離障礙,具有改善臨床管理和擴大醫療服務覆蓋範圍之潛力。遠距醫療已證明的好處包含減少不必要的臨床就診、提供更及時的醫護和擴大醫療服務的覆蓋率。 這份指引建議政策決策者以及設計和監管遠距醫療之實施人員,實施遠距醫療應分為三個階段,其詳細步驟重點如下: 階段一:評估情況 1.組建團隊,並確立目標:確定應參與遠距醫療設計、管理和實施的利害關係人。 2.定義衛生計畫的背景與目標:確定遠距醫療的服務計畫與其地理範圍。 3.對作業環境進行分析:對應用軟體(Software Applications)與通信平台的訊息傳遞通道(Channel)進行作業環境分析、評估應用軟體是否可符合硬體之需求。 4.評估有利環境:包含評估數位成熟度以確定基礎設施與組織需求、審查公衛工作者的能力、評估監管與政策之顧慮、考慮資訊跨域流動之影響、探討財政機制。 階段二:實施之規劃 1.確定遠距醫療系統將如何運作:定義功能性和非功能性需求、因應需求更新之工作流程、進行廣泛的用戶測試、變更管理計畫。 2.實施病人與衛生系統工作者之安全與保護機制:包含建立個資隱私、近用和保護病人個資的系統、實施公衛人員身分驗證之方式、決定並揭露是否會進行錄音錄影等事項。 3.建立標準操作程序(Standard Operating Procedures, SOP):確定遠距醫療適用的案例與潛在責任、決定培訓方式與支持管道、建立確定身分之流程、建立明確的同意文件、討論是否需改變公衛人員的薪酬、建立聯網醫療器材(Connected Medical Devices)的管理計畫。 4.強化客戶/病人參與以及性別、公平與利害關係人權利:決定遠距醫療之推廣機制(Mechanisms for Outreach)、評估遠距醫療之公平性、對利害關係人權利的影響與確保殘疾人士的可近用性。 5.制定預算:確定總成本預算、計畫如何將遠距醫療服務整合到常態醫療服務和採購安排之中。 階段三:監測和評估(Monitoring and Evaluation, M&E)與持續改善 1.確定監測和評估目標:定義績效評估和影響指標。 2.計畫持續改善和適應性管理:加入日常監管和持續改善機制、降低潛在風險。 WHO最後提醒遠距醫療是對於醫療服務的補充而非取代,並提供一個確保病人安全、隱私、追溯性、問責制的可監督環境。 本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)