什麼是「美國CFIUS」?

  美國CFIUS又稱為美國外資投資委員會(Committee on Foreign Investment in the United States),其依據1950年國防製造法(Defense Production Act of 1950)第721款The Exon-Florio修正案,授權組成的政府委員會。

  美國外資投資委員會CFIUS的主要任務,在於審查外資併購交易,以防外國人透過跨國企業併購方式,控制美國企業,危及國家經濟與軍事安全並導致本國高科技技術外流。

  美國在2007年簽署「外國投資和國家安全法」(The Foreign Investment and National Security Act of 2007,簡稱FINSA),該法案針對外國投資安全審查項目,包括加強國家安全概念、完善CFIUS審查與監督職責等。

  近期,新的立法提案方向為「外國投資風險審查現代化法案」(the Foreign Investment Risk Review Modernization Act of 2017,簡稱FIRRMA)。此法案目標是推展CFIUS現代化改革,限制外資對美國科技公司和基礎設施的投資,以維護國家安全。該法案將帶給國會、外商投資及CFIUS的監管環境顯著改變,具體內容包括擴大CFIUS管轄權與權力、擴大對美國關鍵技術與基礎設施投資審查、增加國家安全風險考量因素等。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 什麼是「美國CFIUS」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7944&no=67&tp=1 (最後瀏覽日:2025/10/03)
引註此篇文章
你可能還會想看
歐盟執委會將修正ePrivacy指令

ePrivacy指令修正背景   原資料保護指令將於2018年由一般資料保護規則所取代,在此一背景下,電子隱私指令除補充資料保護指令外,亦訂定關於在電子通訊部門的個人資料處理的具體規則。具體作法,如在利用流量和位置資訊於商業目的之前,應徵得用戶的同意。在ePrivacy指令未特別規定的適用對象,將由資料保護指令(以及未來的GDPR)所涵蓋。如,個人的權利:獲得其個人資料的使用,修改或刪除的權利。   歐盟執委會為進行ePrivacy指令(Richtlinie über den Datenschutz in der elektronischen Kommunikation)改革,於2016年8月4日提出意見徵詢摘要報告,檢討修正ePrivacy指令時著重的的幾個標的: (1)確保ePrivacy規則與未來的一般資料保護規則之間的一致性。亦即評估現有規定是否存在任何重複、冗餘、不一致或不必要的複雜情況。(如個人資料洩漏時的通知) (2)指令僅適用於傳統的電信供應商,而在必要時應該以新市場和技術的現實的眼光,重行評估更新ePrivacy規則。對於已成為電子通信行業新興創新的市場參與者,如:提供即時通訊和語音通話(也稱為“OTT供應商”),由於目前不需要遵守ePrivacy指令主要規定,而應納入修正對象。 (3)加強整個歐盟通訊的安全性和保密性。ePrivacy指令在規範上,確保用戶的設備免受侵入、確保通信的安全性和保密性。本指令第5條第3項,儲存資訊、或近用已存儲在用戶設備之資訊,需得其的同意。該條款的有效性已有爭論,因為新的追踪技術,如:指紋識別設備可能無法被現有的規則所涵攝。最後,有認需得同意的例外規定列表,有必要延伸到對資訊之其他非侵入性的儲存/近用:如網路分析等。這些都是應予以仔細評價和檢視之對象。 公眾諮詢摘要報告內容   經過4月13日到7月5日的公眾諮詢,歐盟執委會於8月4日提出報告。   諮詢意見主要來自德(25.9%)、英(14.3%)、比(10%)、法(7.1%)的回覆。   一、是否有必要在電子通訊部門訂定隱私特別規定? 市民與公民團體咸認有必要在電子通訊部門,甚至流量資料和位址資訊也應該訂定新規(83%)、企業則認為無甚需要,只有在秘密性規則(31%)與流量資料(26%)有需要訂定;主管機關則咸認需要特別規定。   二、現行指令是否已足達成其立法目的?76%市民和公民團體認為未達立法目的,理由如下: ePrivacy指令的範圍太狹小,不包括即時訊息、語音通話(VoIP)和電子郵件應用服務。 規範太模糊,導致會員國之間適用結果和保護程度的差異、不一致。 法律遵循的程度展法程度太差。   三、是否應為新通訊服務訂定新規?   76%市民和公民團體認為適用範圍應該涵蓋到OTT上。

法國通過新的加密貨幣監管法律

  2017年5月,馬克宏政府上任後,積極推動新興創新技術,以期將法國建設為新創國度。在此施政方針下,政府於2018年間提出「企業成長與轉型法案」(The PACTE draft Bill),並於2019年4月11日經法國國民議會通過,係為《企業成長與轉型法》(La loi PACTE)。   本法主要針對六大議題做改革,包含:企業成長及交接程序、擴增企業社會責任及員工參與率、資金、數位轉型及創新、行政流程簡化、提高國際競爭力。在「數位轉型及創新」部分,該法為「首次代幣發行(Initial Coin Offering, ICO)」和「數位資產服務提供者(Digital Assets Services Providers, DASP)」建立一法律框架,其主要制度內容,大抵有四: (一) ICO之選擇性憑證(Optional visa):   ICO發起人在符合一定要件時,「得」向法國金融市場管理局(Autoritédesmarchésfinanciers, AMF)繳交相關資訊文件,以獲憑證;如未為之,募資仍屬合法,惟不得公開徵求資金、發起資助,僅可進行廣告活動。 再者,獲得選擇性憑證必須符合以下要件,包含: 代幣發行人在法國成立或註冊合法之法人組織; 提供的資料文件上,須載明代幣發行、籌資計畫、公司等所有相關資訊; 必須有一個系統機制,來監控和保護在銷售過程中收集的資產; 遵守反洗錢(Anti money Laundering)和恐怖份子籌資活動(terrorist financing)相關規定。 (二) 數位資產服務提供者之選擇性特許(Optional license):   數位資產服務提供者,「得」主動向AMF申請特許並受其監督;如未為之,仍屬合法,惟不得公開徵求資金、發起資助,僅可進行廣告活動。   然而,須注意的是,無論服務提供者是否申請特許,凡「向第三方提供數位資產保管服務」或「買受數位資產以換取法定貨幣」者,皆須至AMF辦理註冊事宜。 (三) 允許二種資金可投資於數位資產:   該法指出,「符合市場流通性和估價規則之專業投資基金」和「專業私募股權投資基金」可投資於數位資產。 (四) 強化AMF之監管權力:   該法賦予主管機關AMF一定之監管權力,包含: 得監督「已獲選擇性憑證之ICO」及「經選擇性特許之服務提供者」,於其未遵守法規時,施以制裁。 得公布違法ICO及服務提供者之「黑名單」。 得封鎖數位資產服務之詐欺網站。

美國廠商使用之DMCA侵權調查正確性遭質疑

  一項由華盛頓大學所發表的研究聲明指出,媒體工業團體正使用有瑕疵的方式調查peer-to-peer網路文件共享中侵害著作權的問題。包括M.P.A.A.、E.S.A.、R.I.A.A等團體,不斷寄出逐年增加的DMCA侵權移除通知(takedown notices)給各大學和其他的網路業者。許多大學會在未經查證的情況下直接將侵權移除通知轉寄給學生,R.I.A.A.甚至跟進其中的一些侵權報告並將之寫入財務報告中。   但在2008年6月5日由華盛頓大學的助理教授等三人所發表的研究中認為這一些侵權移除通知應該更審慎檢視之。研究指出,這些團體在指控檔案分享者的調查過程中有嚴重的瑕疵,可能使對方遭受不當的侵權指控,甚至可能來自其他網路使用者的陷害。在2007年5月及8月的兩次實驗中,研究員利用網路監控軟體監控他們的網路流量,實驗結果顯示即使網路監控軟體並未下載任何檔案,卻仍然接收到了超過400次的侵權警告信。   該研究結果顯示執法單位的調查過程中只查詢了網路分享軟體使用者的I.P.位址,卻未真正查明使用者正在下載或是上傳的實際檔案為何,在這種薄弱的搜查技巧跟技術方式之下任何使用網路文件分享軟體的使用者都可能被告,不論其所分享的檔案是否侵權皆如此。

新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險

新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。

TOP