2017年12月14日美國聯邦通信委員會(Federal Communications Commission, FCC)以3票對2票表決通過,廢止自2015年來所採取網路寬頻服務的高壓監管規定,並恢復了原來所採取低管制監管框架。支持者與反對者分別來自兩個不同的黨派。
經過詳細的分析以及對消費者和利益相關者的評論廣泛審查後,委員會認為自2015年來對網路寬頻服務採取的高壓規定,對整個網路生態系統施加了巨大的成本。為了取代這個嚴格的框架,FCC重新採用2015年之前的傳統低管制監管框架。
FCC 特別要求行動寬頻服務業者應公開揭露其網路管理政策例如:如何處理網路安全與壅塞問題、服務內容與商業條款等,以利於消費者與業者進行有效選擇,並促進政府對寬頻業者的行為進行有效的監督。此外 ,FCC恢復了聯邦貿易委員會(Federal Trade Commission, FTC)的管轄權,以便在寬頻業者從事反競爭、不公平或欺騙行為時採取行動。
在對消費者的影響方面,自由市場的支持者認為,付費優先的作法,意味在寬頻基礎建設上會有更多投資,使得上網和整體資料傳輸速度大為增加。
為達上述目標,委員會所採取之具體措施如下:
此外FCC又禁止各州限制擴建寬頻網路服務的法律。據FCC統計,大約20個州有限制社區寬頻網路服務活動的法律,這些州的法律不公平地限制政府部門與有線電視和電信寬頻服務提供商的競爭。 FCC通過該案後引發不少如Google、Facebook及Netflix等科技公司,與消費者保護環體齊力撻伐,認為ISP業者在FCC力挺下,將可隨意限制民眾上網瀏覽的內容,大企業因此具優先權,不利新創網路公司生存發展,且投下反對票的政黨表示,將率領各州對聯邦傳播委員會這項決定提出法律挑戰,透過訴訟尋求翻盤機會。
2009年02月17日美國總統簽署通過「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, ARRA),將醫療產業列為重點發展項目之ㄧ,擬由政府預算進行醫療資訊科技化計畫,俾使電子病歷的傳輸與交換得兼顧效率及安全。而以規範醫療資訊安全為主的「醫療保險可攜及責任法」之隱私權條款(HIPAA, Privacy Rule),亦因此有重大修正。 其中,最主要的變革在於擴充HIPAA的責任主體,由原有的健康照護業者、健康計畫業者及健康照護資訊交換業者,擴充至凡因業務關係而可能接觸個人健康資訊的個人或業者,包含藥劑給付管理公司、代理人及保險業者等,這些機構或個人原本與醫療院所或病患間係依據契約關係進行責任規範,但被納入HIPAA的責任主體範圍後,則需依此負擔民、刑事責任。 而於加強資訊自主權部份,亦有數個重要變革如下:(一)責任主體之通知義務:依據新規定,資料未經授權被取得、使用或揭露,或有受侵害之虞時,責任主體應即早以適切管道通知資訊主體有關被害之情事,以防備後續可能發生的損害。(二)資訊主體之紀錄調閱權:以往資料保管單位得拒絕個人調閱健康資料運用紀錄之請求,有鑒於病歷電子化後,保存及揭露相關紀錄已不會造成過重負擔;依據新規定,資訊主體有權調閱近三年內個人健康資料被使用次數及目的等紀錄。(三)資訊主體資料揭露之拒絕權:以往責任主體得逕行提供個人醫療資訊作為治療、計費及照護相關目的之使用,無論資訊主體曾表達拒絕之意與否;依據新規定,資訊主體得禁止其向保險人揭露相關資訊,除非保險人已全額支付醫療費用。 以上HIPAA之新增規範,預計於2010年02月17日正式施行。
美國4州及司法部指控資料處理商(Agri Stats)的資料共享行為涉及聯合行為美國明尼蘇達州、加州、北卡羅萊納州及田納西州之檢察總長於2023年11月加入「美國司法部(U.S. Department of Justice, DOJ)在同年9月對於肉品產業資料提供者(Agri Stats, Inc.,以下簡稱Agri Stats)提起的反壟斷訴訟」中,主張Agri Stats透過報告方式將肉品數據資料分享給訂閱服務之肉類加工商,此類資料共享行為削弱了市場競爭關係造成聯合行為,違反了休曼法(Sherman Act)。以下先就此案背景進行說明,以釐清此案象徵意義。 於2023年2月,美國司法部反壟斷部門撤回3項與資訊共享相關的聲明,該3聲明是為了醫療保健產業而發布,其中就資料分享之安全使用方式亦可讓其他產業的資料提供業者評估其資料分享行為是否造成反壟斷行為,惟在目前AI/演算法技術變革之下,利用共享所得之資料反推競爭對手之競爭策略具有可行性,因此當年認為有助於促進競爭之資料共享行為,現在反而有造成聯合行為之可能,故廢棄該3項已過時的聲明。 於2023年9月28日,美國司法部反壟斷部門於明尼蘇達州指控Agri Stats違反休曼法。Agri Stats為專門彙整、分析美國豬肉與家禽(肉雞、火雞)相關商業資料的資料處理商,並將其分析報告提供給具競爭關係的肉品加工商,肉品加工商可透過將Agri Stats分析報告反推以監控/預測出競爭對手之價格、供應量、營運計畫等,並依分析報告建議進行價格調高與減產的行為,而被美國司法部認定為聯合行為。 該訴訟所涉及的肉品加工商占了全美家禽(肉雞與火雞)銷售量的9成以上,豬肉銷售量的8成以上。目前已有前述4州加入該訴訟,法院後續會如何認定,將影響產業間的資料交換作法,也顯現出資料商業化前須先做好資料管理,確保在合規的範圍內進行資料利用,國內廠商可參資策會科法所公布之《重要數位資料治理暨管理制度規範(EDGS)》對自身資料管理機制進行檢視。 本文同步刊登於TIPS網站(https://www.tips.org.tw/)
生命科學領域的企業應透過營業秘密保護其部分創新近期由於營業秘密議題受到重視,引起廣泛討論,美國實務界律師於彭博社法律專欄(Bloomberg Law Practical Guidance)指出生命科學領域的企業不應僅尋求專利的保護,而應考慮透過營業秘密來保護其部分創新,比如:製造技術、分析工具及方法、配方等,並指出保護營業秘密所應採取的具體措施。 在Mayo Collaborative Servs. v. Prometheus Labs一案中,美國最高法院認為診斷方法並非真正的應用,因此不符合可取得專利的資格;在Ass'n for Molecular Pathology v. Myriad Genetics一案中,美國最高法院認為將天然基因分離的技術不符合可取得專利的資格。由上述判決可以發現,生命科學領域的公司能取得專利的範圍被限縮了,因此該領域的企業應考慮透過營業秘密來保護其創新。 營業秘密相對於專利的優勢在於,專利有保護期限,但營業秘密若未公開揭露則能持續受到保護。另外,根據美國專利法(Patent Act),專利保護之客體限於有用且新穎的發明,但營業秘密保護之客體不僅限於此。不過,以營業秘密保護創新同樣存在風險,比如可能面臨前員工、現任員工將其洩露或是由於合作案導致其被竊取的情況等。 為避免上述情況之發生,企業應採取下列措施,包括: 1. 要求員工簽署保密協議,並於協議中具體說明營業秘密之範圍、保密期限,同時確保員工離職時歸還與營業秘密有關的資訊及設備; 2. 將涉及營業秘密的文件標示為機密; 3. 將機密文件及檔案儲存於上鎖的櫃子或受密碼保護的電腦中; 4. 根據員工的職責,僅允許必要的員工存取營業秘密資訊; 5. 對員工進行教育訓練,使其了解哪些資訊被視為營業秘密而不應洩露; 6. 透過監視設備監控保存營業秘密的位置; 7. 與合作單位簽署合作協議時,確保協議中有明確規定哪些資訊被視為營業秘密、分享營業秘密的方式、保密期限、授權的範圍等。 綜上所述,由於可取得專利的範圍被限縮,生命科學領域的企業應考慮透過營業秘密來保護其部分創新。在以營業秘密保護其創新時,應確保有採取與員工簽署保密協議、識別機密、權限控管、教育訓練、與合作單位簽署合作協議等措施。關於前述營業秘密管理措施之重要內容,企業可以參考資策會科法所創意智財中心發布的「營業秘密保護管理規範」,並進一步了解該如何管理,以降低自身營業秘密外洩之風險,並提升其競爭優勢。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐盟議會發布《可信賴人工智慧倫理準則》2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。