美國FCC廢除網路中立法規

  2017年12月14日美國聯邦通信委員會(Federal Communications Commission, FCC)以3票對2票表決通過,廢止自2015年來所採取網路寬頻服務的高壓監管規定,並恢復了原來所採取低管制監管框架。支持者與反對者分別來自兩個不同的黨派。

  經過詳細的分析以及對消費者和利益相關者的評論廣泛審查後,委員會認為自2015年來對網路寬頻服務採取的高壓規定,對整個網路生態系統施加了巨大的成本。為了取代這個嚴格的框架,FCC重新採用2015年之前的傳統低管制監管框架。

  FCC 特別要求行動寬頻服務業者應公開揭露其網路管理政策例如:如何處理網路安全與壅塞問題、服務內容與商業條款等,以利於消費者與業者進行有效選擇,並促進政府對寬頻業者的行為進行有效的監督。此外 ,FCC恢復了聯邦貿易委員會(Federal Trade Commission, FTC)的管轄權,以便在寬頻業者從事反競爭、不公平或欺騙行為時採取行動。

  在對消費者的影響方面,自由市場的支持者認為,付費優先的作法,意味在寬頻基礎建設上會有更多投資,使得上網和整體資料傳輸速度大為增加。

  為達上述目標,委員會所採取之具體措施如下:

  • 將寬頻接取服務(包括固定與行動寬頻服務)重新歸類為資訊服務。
  • 將行動寬頻接取服務恢復歸類為私人行動服務。
  • 將網路服務提供者有關隱私保護、不公平、詐欺和反競爭行為之管轄權回歸由聯邦貿易委員會負責。
  • 要求網路服務提供者向消費者、企業和委員會揭露有關其做法的訊息,包括阻止,限制,支付優先次序或附屬優先次序。

  此外FCC又禁止各州限制擴建寬頻網路服務的法律。據FCC統計,大約20個州有限制社區寬頻網路服務活動的法律,這些州的法律不公平地限制政府部門與有線電視和電信寬頻服務提供商的競爭。 FCC通過該案後引發不少如Google、Facebook及Netflix等科技公司,與消費者保護環體齊力撻伐,認為ISP業者在FCC力挺下,將可隨意限制民眾上網瀏覽的內容,大企業因此具優先權,不利新創網路公司生存發展,且投下反對票的政黨表示,將率領各州對聯邦傳播委員會這項決定提出法律挑戰,透過訴訟尋求翻盤機會。

相關連結
相關附件
※ 美國FCC廢除網路中立法規, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7956&no=67&tp=1 (最後瀏覽日:2026/02/09)
引註此篇文章
你可能還會想看
日本總務省公告第一次Startup×Act計畫成果

  2017年底,日本總務省(総務省)宣布實施Startup×Act計畫,委由知名智庫野村綜合研究所(株式会社野村総合研究所)辦理執行,希望透過與新創團隊共同協作的模式,運用資通信科技(Information Communication Technology, ICT)緩解日本高齡化、少子化、都市防災、城鄉差距等問題。該計畫第一期已於2018年2月執行完畢,並於2018年3月8日在東京舉行了計畫成果發表會。根據日本總務省新聞稿表示,Startup×Act計畫是參考美國的新創駐進計畫(Startup in Residence, STiR;或譯創業家居留計畫)進行設計。   STiR係舊金山公民創新市長辦公室(San Francisco Major’s Office of Civic Innovation)於2014年成立的計畫,該計畫強調以公私共同協作的方式解決政府所面臨的民生問題。STiR運作方式雖在個別城市略有差異,但大致係由地方政府選定特定數個待解決的都市問題,再以工作坊的形式與有興趣之新創團隊進行討論。整個計畫以16周為期,以公私共同開發出產品或服務原型為目標,最後由新創團隊進行提案報告,為都市問題提供解決方法。提案可能被市政府採納並在市政府的協助之下以該都市做為實證場域,未來更可能與市政府簽訂合作契約,進一步使該新創團隊成為一成熟型新創公司。據統計,平均每年參與STiR的新創團隊有半數獲得了與當地市政府的合約。目前STiR已經推行至全美包含華盛頓DC在內的11個城市,並在荷蘭阿姆斯特丹與海牙皆設有姊妹站,由此可見STiR模式獲得相當大的迴響與肯定,並具有跨域、跨文化之普適性。   日本參考STiR所推出的Startup×Act計畫於2017年底啟動,第一個參與的地方政府為京都府京丹後市,之後陸續有北海道天塩町、香川縣高松市、熊本縣熊本市加入計畫。Startup×Act的Act為Applications for Cities and Town之縮寫,彰顯城市作為新創產品或服務實證場域的計畫特色。   Startup×Act擇定健康醫療與社福照顧、育兒與教育、安全安心生活、城鄉發展與交通以及產業振興提升就業為五大都市問題。在Startup×Act計畫之下,地方政府毋須提供政府採購的需求說明書(Request for Proposal, RFP),僅需提出希望解決之問題。舉例而言,香川市就提出「希望能讓被取消駕照資格的高齡者繼續享受出門購物的樂趣」,最後該案由一間VR新創公司提出解決方案。   STiR與Startup×Act這種類工作坊的高密度、高強度的腦力激盪與供需兩端直接溝通是其特色。時程短、彈性高,資源共享與知識流通量巨大,並且以解決問題為導向,能破除新創企業參與政府採購的障礙。新創團隊除了可以在短時間內累積大量地方社群與政府人脈,增加彼此信任度,更可以從具體的實證經驗當中學習並進一步拓展市場。

智慧財產權侵權風險分擔機制-歐盟專利訴訟保險制度

數位創作透過非同質化代幣(NFT)交易之智財侵權風險

  數位創作藉由區塊鏈轉化為具獨特性之加密貨幣─非同質化代幣(non-fungible token,後稱NFT),仿佛數位創作者對創作成品簽名落款或標示出處來源,NFT也因此解決數位創作成品之來源與真偽驗證等問題,使其有如傳統的藝術作品更具收藏價值也更有利於在市場中交易,然而在此數位創作成為新型態數位收藏標的之同時,潛藏的智慧財產議題也衍生而出。   儘管NFT解決數位創作之產出來源等驗證問題,卻無法確保該NFT交易標的是否抄襲其他擁有著作權保護之創作。當收藏者轉售購入之數位創作時,便有可能構成販售侵權作品,根據美國著作權法第504條(c)項所列之賠償金額在750美元以上至3萬美元以下,甚至故意侵權賠償15萬美元。因此,如同一般傳統藝術交易,在NFT投資或收藏交易前,建議先對創作者或藝術家進行相關調查,甚至可諮詢法律顧問以確保交易標的智財狀況;此外,當交易標的屬戲謔創作時,則建議評估相對應之投資風險。   而數位創作之形式相當多元,除了數位影像、數位相片外,也含括社群媒體產出之網路迷因(meme)、虛擬圖片影像等,過去因為易於大量複製流傳而無法追溯原始創作者,如今在區塊鏈技術轉化下使前述類型之數位創作產出皆可能成為NFT交易標的。例如,今(2021)年三月美國數位藝術家Beeple於佳士得拍賣透過NFT將其作品〈每天:最初的五千天〉(Everydays: The First 5000 Days)以超過6,900萬美元的價格售出;Twitter共同創辦人Jack Dorsey以290萬美元透過NFT售出其第一則推文;此外,2011年在Youtube爆紅的像素影片〈彩虹貓〉(Nyan Cat)與2007年的英國小兄弟生活紀錄〈查理咬我的手指〉(Charlie Bit My Finger)等也透過NFT分別以超過50萬美元與超過76萬美元的金額售出。此外,根據比特幣交易所CoinDesk統計,NFT銷售額在今年上半年達到24.7億美元,反觀去年同期的1,370萬美元,NFT成了難以忽視的活絡產業。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

TOP