荷蘭與德國率先成立GO FAIR國際支援與合作辦公室,推動歐洲開放科學雲

  歐洲開放科學雲(European Open Science Cloud, EOSC)旨在整合現有的數據基礎設施以及科研基礎設施,為歐洲研究人員與全球科研合作者提供共享的開放資料服務。為此,荷蘭與德國於12月率先成立GO FAIR國際支援與合作辦公室(The GO FAIR international support and coordination office, GFISCO)。荷蘭辦公室坐落於萊頓,並由荷蘭政府與萊頓大學醫學中心(Leiden University Medical Center)所共同出資設立。

  該辦公室之成立源自於GO FAIR計畫,GO意即全球開放(The Global Open)、FAIR則分別係指可發現(Findable)、可連接(Accessible)、共同使用(Interoperable)和可重複使用(Re-usable),其目標在於跨越國界,開放目前科研領域現有的研究數據,係為邁向歐洲科學雲之里程碑。 荷蘭與德國曾於2017年5月時,發表聯合立場聲明書以展現推動歐洲開放科學雲以及全力支援GO FAIR計畫之企圖心,此次辦公室之設立為,包含以下主要任務:

  1. 支援由個人、機構、計畫組織等各方所組成的GO FAIR實踐網絡(GO FAIR Implementation Networks, INs)之營運工作。
  2. 進行GO FAIR實踐網絡之協調工作,以避免重複或壟斷之情形發生。
  3. 透過教育支援等方式倡議推行GO FAIR計畫。

  GO FAIR國際支援與合作辦公室主要之角色為提供建言,而非幫助GO FAIR計畫做決策,若無達成預期效果或是缺乏明確的工作計畫時,該辦公室則可提供相關服務,以協助達成預期目標,並協助處理行政上之相關議題。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 荷蘭與德國率先成立GO FAIR國際支援與合作辦公室,推動歐洲開放科學雲, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7961&no=67&tp=1 (最後瀏覽日:2026/02/18)
引註此篇文章
你可能還會想看
日本公布2014年度智慧財產推進計畫

  日本於2013年6月由智慧財產戰略本部發布了「智慧財產政策願景」,作為自公布後未來十年中長期智慧財產政策的核心,其後每年均依此制定各年度的智慧財產推進計畫。   延續前揭「智慧財產政策願景」內容,智慧財產戰略本部於今年7月4日公布「智慧財產推進計畫2014」,除仍以「為強化產業競爭力,構築全球性智財系統」、「中小、新創企業的智財管理強化支援」、「對應數位網路社會的環境建構」、「強化以內容為中心的軟實力」等四項領域作為核心之外,另經由2013年10月起設置的「檢證。評價。企畫委員會」選擇十二項議題進行充分的討論,並以此十二項議題作為制定今年度「智慧財產推進計畫2014」的基礎。   此外,委員會並針對單一部會進行施政將有所困難,有必要進行跨部會橫向協力的五項課題設置特別任務小組,列為「智慧財產戰略本部最重點的五支柱」,分別為:1、職務發明制度根本性的修正;2、營業秘密保護整體性的強化;3、中小、新創企業和大學的海外智財活動支援;4、數位內容的海外拓展及與搏來客行銷間的協力;5、加速建構以促進數位典藏的利活用。日本智財戰略本部並期待此「智慧財產戰略本部最重點的五支柱」能發揮司令塔的功能,對相關連的政策發揮引導的功用。

英國數位、文化、媒體暨體育部發布資料道德與創新中心公眾諮詢

  英國數位、文化、媒體暨體育部(Department for Digital, Culture Media & Sport, DCMS)於2018年6月13日發布有關資料道德與創新中心(Centre for Data Ethics and Innovation)之公眾諮詢,本次諮詢將於2018年9月5日截止。   在資料使用與人工智慧皆快速發展且對生活模式產生重大改變之背景下,英國政府認為企業、公民以及公部門對於資料及人工智慧的安全及道德創新都需要有明確規範以資遵循,以因應該領域快速發展而生的問題。為此,英國政府欲新建一個資料倫理與創新中心,該中心本身並不會對於資料及人工智慧的使用作出規範,主要係通過吸收各界的經驗及見解,統整這些經驗或見解並轉化為對政府現行監管方面缺陷之建議,該中心具有獨立諮詢之地位(independent advisory status),提供政府對資料及人工智慧相關議題之治理建議。   諮詢文件內指出中心作用及目標旨在提供政府政策指導,並與監管機構、研究機構、公民社會密切合作,以制定正確的政策措施;對於中心的活動及產出,政府認為中心可進行對於資料及人工智慧的分析及預測,並擬定最佳實務作法(如開發有效及合乎道德的資料及AI使用框架),進而向政府提供有助資料及人工智慧之安全及道德創新發展的相關建議。   本次公眾諮詢主要針對資料道德與創新中心之營運方式及重點工作領域徵詢意見,所提出問題大致上包括是否同意中心目前的職責及目標?中心該如何與其他機構進行合作?中心應採取哪些行動?是否同意目前建議的行動類型?中心需要哪些法定權力?中心如何向政府提交建議?是否應將中心提交之建議向大眾公開?   我國行政院於今(2018)年1月18日提出為期4年之「台灣AI行動計畫(2018-2021)」,計畫內容之五大重點為:(1)AI領航推動;(2)AI人才衝刺;(3)建構國際AI創新樞紐;(4)創新法規、實證場域與資料開放;(5)產業AI化,其中,第4點細部內容提及將建立高資安防護及親善介面之資料開放與介接平台,顯見我國政府正全力推動AI發展,亦對資料開放相關議題頗為重視。是以,英國資料道德與創新中心之發展在未來我國推動AI普及與產業AI化之進程上,似可提供我國參考方向,以健全AI發展之法制環境。

美國地方法院裁定產品專利資訊標示不實之罰金計算以該產品之最高售價為基礎

  繼美國聯邦巡迴上訴法院於2009年底於The Forest Group Inc v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292條中關於不實專利標示(false patent marking)的罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎,並將原案發回地方法院(the U.S. District Court for the Southern District of Texas)重審後,地方法院於今年4月27日裁定基於專利法第292條具懲罰性之本質,針對標示錯誤或標示無效專利號之產品之罰金應以該產品之最高售價而非被告基於販售該產品所獲得之利潤或經濟利益來計算。   於此案中,The Forest Group產品之售價介於美金 $103至 $180元間,法院因而裁定處以The Forest Group每一標示錯誤專利資訊產品 $180元之罰金。 Atlas 法官提到藉由將標示不實專利資訊者處以該產品之最高售價之罰金,The Forest Group所需賠償之罰金將超過其藉由販售該產品所獲取之利益,達到第292條遏制之目的。   預計此案之判決將對其他地方法院於處理類似案件之判定產生引響,尤其對那些將錯誤專利資訊標示在大量產品上的被告而言。此外,正如各界所預料,繼去年聯邦巡迴上訴法院對第292條提出罰金計算基礎之解釋後,提起相關訴訟案件之數量已大量提升,至今已累積約140案。另,聯邦巡迴上訴法院亦剛於6月10日於Pequignot v. Solo Cup 一案中針對標示過期專利、舉證責任等與第292條相關之爭議做出解釋,後續效應直得企業持續關注。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP