新加坡聖淘沙發展局(Sentosa Development Corporation, SDC)(以下簡稱聖淘沙發展局)於今(2018)年1月30日向新加坡高等法院(High court)起訴,主張一家名為Vela的醫療器材企業(包含Vela Operations Singapore, Vela Diagnostics等子公司,以下合稱Vela公司),在其一系列檢測HIV及茲卡病毒的醫材產品中使用″Sentosa″(下稱系爭商標)之行為,侵害了聖淘沙發展局的商標權,要求其停止使用。
聖淘沙發展局隸屬於新加坡貿易與工業部,為專責推動聖淘沙觀光活動的法人機構,系爭商標早在2005年於新加坡申請註冊,其保護範圍以服裝、飾品、書籍、玩具與飲品等涉及觀光之類別為主。截至2015年止,聖淘沙發展局更將保護範圍擴及馬來西亞、印尼及中國大陸。該局表示,系爭商標在過去長達45年的經營下,已成為新加坡著名商標。Vela公司將之作為其醫材品牌的行為,不僅會淡化,甚至減損系爭商標的識別性,造成消費者混淆誤認,將該檢測醫材與聖淘沙發展局產生不當連結,為蓄意藉機炒作。
事實上,Vela公司曾欲將″Sentosa″申請註冊商標,卻於2012年11月被駁回。這次Vela公司則提起商標無效之反訴回應聖淘沙發展局的訴訟,其認為系爭商標係指稱新加坡當地觀光渡假勝地的地理名詞,縱非地理名詞,在馬來語中亦屬稱頌和平寧靜之用語,無法代表特定之服務或產品,根本欠缺商標識別性要件,系爭商標應屬無效。
本案涉及新加坡司法實務有關地理名詞是否具備商標識別性之判斷標準,故其後續發展,值得追蹤觀察。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
英國數位、文化、媒體暨體育部(Department for Digital, Culture Media & Sport, DCMS)於2018年6月13日發布有關資料道德與創新中心(Centre for Data Ethics and Innovation)之公眾諮詢,本次諮詢將於2018年9月5日截止。 在資料使用與人工智慧皆快速發展且對生活模式產生重大改變之背景下,英國政府認為企業、公民以及公部門對於資料及人工智慧的安全及道德創新都需要有明確規範以資遵循,以因應該領域快速發展而生的問題。為此,英國政府欲新建一個資料倫理與創新中心,該中心本身並不會對於資料及人工智慧的使用作出規範,主要係通過吸收各界的經驗及見解,統整這些經驗或見解並轉化為對政府現行監管方面缺陷之建議,該中心具有獨立諮詢之地位(independent advisory status),提供政府對資料及人工智慧相關議題之治理建議。 諮詢文件內指出中心作用及目標旨在提供政府政策指導,並與監管機構、研究機構、公民社會密切合作,以制定正確的政策措施;對於中心的活動及產出,政府認為中心可進行對於資料及人工智慧的分析及預測,並擬定最佳實務作法(如開發有效及合乎道德的資料及AI使用框架),進而向政府提供有助資料及人工智慧之安全及道德創新發展的相關建議。 本次公眾諮詢主要針對資料道德與創新中心之營運方式及重點工作領域徵詢意見,所提出問題大致上包括是否同意中心目前的職責及目標?中心該如何與其他機構進行合作?中心應採取哪些行動?是否同意目前建議的行動類型?中心需要哪些法定權力?中心如何向政府提交建議?是否應將中心提交之建議向大眾公開? 我國行政院於今(2018)年1月18日提出為期4年之「台灣AI行動計畫(2018-2021)」,計畫內容之五大重點為:(1)AI領航推動;(2)AI人才衝刺;(3)建構國際AI創新樞紐;(4)創新法規、實證場域與資料開放;(5)產業AI化,其中,第4點細部內容提及將建立高資安防護及親善介面之資料開放與介接平台,顯見我國政府正全力推動AI發展,亦對資料開放相關議題頗為重視。是以,英國資料道德與創新中心之發展在未來我國推動AI普及與產業AI化之進程上,似可提供我國參考方向,以健全AI發展之法制環境。
德國首例因Twitter超連結的裁定出爐根據德國法蘭克福地方法院日前於4月20日的一則假處分裁定(Beschluss vom 20.04.2010, Az. 3-08 O 46/10),禁止被告以超連結方式,讓點取該鏈結的人,得以連結到刊登有損害原告商業信譽的文章頁面。 本件事實起源於一名匿名的網友在不同的網路論壇中,發表刊登有侵害原告商業信譽的言論,而曾經與原告有商業上往來的被告,利用自己Twiiter帳戶,發表超連結,並在鏈結網址下加上「十分有趣」的文字,讓看到該訊息的朋友,都可以點選鏈結連接到這些不利於原告商業信譽的文章、言論。原告因而向法院申請假處分裁定,禁止被告以超連結方式繼續為有損原告商業信譽的行為。 法蘭克福地方法院的這起裁定,被視為是德國國內第一起法院對Twitter等社群網站的警告,德國輿論各界也普遍認為,法院透過裁定對外明白宣示社群網站使用者往往誤認網路社群空間為「半私人場域(須加入好友才得以分享資訊、留言等)」,在自己的帳戶上發表心得、感想、分享文章等行為,還是有構成侵權責任的可能性。 該裁定出爐後,德國各界則開始討論被告設定超連結的行為是否構成網路侵權責任,持贊成意見者認為,即使該違法言論非被告本人所發表,被告設定超連結的行為,也讓自己與該違法言論「合而為一(zueigen gemacht)」,也就是,讓外界以為該違法言論就是被告本人所撰寫刊登;根據德國電信服務法(Telemediengesetz, TMG)第7條規定,內容提供者須為「自己」的言論負擔法律責任。 反對者則拿其他超連結的案例舉出,法院認定被告是否構成網路內容提供者的侵權責任,通常會檢視被告對於該違法言論的內容是否知悉、被告是否違背其檢查監督義務(Überprüfungspflicht),例如被告須為一定行為藉以與原撰文者劃清界線等。但因各該檢驗標準都係由法院依據個案加以認定,讓人無所適從,產生網路侵權行為的判斷標準過於浮動之疑慮,德國國會也因此著手進行電信服務法的修法。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
落實完善數位資料管理機制,有助於降低AI歧視及資料外洩風險落實完善數位資料管理機制, 有助於降低AI歧視及資料外洩風險 資訊工業策進會科技法律研究所 2023年07月07日 近年來,科技快速發展,AI(人工智慧)等技術日新月異,在公私部門的應用日益廣泛,而且根據美國資訊科技研究與顧問公司Gartner在2023年5月發布的調查指出,隨著由OpenAI開發的ChatGPT取得成功,更促使各領域對於AI應用的高度重視與投入[1],與此同時,AI歧視及資料外洩等問題,亦成為社會各界的重大關切議題。 壹、事件摘要 目前AI科技發展已牽動全球經濟發展,根據麥肯錫公司近期發布的《生成式人工智慧的經濟潛力:下一個生產力前沿(The next productivity frontier)》研究報告指出,預測生成式AI(Generative AI)有望每年為全球經濟增加2.6兆至4.4兆的經濟價值[2]。同時在美國資訊科技研究與顧問公司Gartner對於超過2500名高階主管的調查中,45%受訪者認為ChatGPT問世,增加其對於AI的投資。而且68%受訪者認為AI的好處大於風險,僅有5%受訪者認為風險大於好處[3]。然而有社會輿論認為AI的判斷依賴訓練資料,將可能複製人類偏見,造成AI歧視問題,而且若程式碼有漏洞或帳戶被盜用時,亦會造成資料外洩問題。 貳、重點說明 首先,關於AI歧視問題,以金融領域為例,近期歐盟委員會副主席Margrethe Vestager強調若AI用於可能影響他人生計的關鍵決策時,如決定是否能取得貸款,應確保申請人不受性別或膚色等歧視[4],同時亦有論者認為若用於訓練AI的歷史資料,本身存有偏見問題,則可能導致系統自動拒絕向邊緣化族群貸款,在無形之中加劇,甚至永久化對於特定種族或性別的歧視[5]。 其次,關於資料外洩問題,資安公司Group-IB指出因目前在預設情況下,ChatGPT將保存使用者查詢及AI回應的訊息紀錄,若帳戶被盜,則可能洩露機敏資訊。據統計在2022年6月至2023年5月間,在亞太地區有近41000個帳戶被盜,而在中東和非洲地區有近25000個帳戶被盜,甚至在歐洲地區也有近17000個帳戶被盜[6]。另外在2023年3月時,ChatGPT除了發生部分用戶能夠檢視他人聊天紀錄標題的問題外,甚至發生個人資料外洩問題,即用戶可能知悉他人的姓名、電子郵件,付款地址,信用卡到期日及號碼末四碼等資料[7]。 參、事件評析 對於AI歧視及資料外洩等問題,應透過落實完善數位資料治理與管理機制,以降低問題發生的風險。首先,在收集訓練資料時,為篩選適合作為模型或演算法基礎的資料,應建立資料評估或審查機制,減少或避免使用有潛在歧視問題的資料,以確保分析結果之精確性。 其次,不論對於訓練資料、分析所得資料或用戶個人資料等,均應落實嚴謹的資料保密措施,避免資料外洩,如必須對於資料進行標示或分類,並依照不同標示或分類,評估及採取適當程度的保密措施。同時應對於資料進行格式轉換,以無法直接開啟的檔案格式進行留存,縱使未來可能不慎發生資料外洩,任意第三人仍難以直接開啟或解析資料內容。甚至在傳送帳戶登入訊息時,亦應採取適當加密傳送機制,避免遭他人竊取,盜取帳戶或個人資料。 財團法人資訊工業策進會科技法律研究所長期致力於促進國家科技法制環境完善,於2021年7月發布「重要數位資料治理暨管理制度規範(Essential Data Governance and Management System,簡稱EDGS)」,完整涵蓋數位資料的生成、保護與維護,以及存證資訊的取得、維護與驗證的流程化管理機制,故對於不同公私部門的AI相關資料,均可參考EDGS,建立系統性數位資料管理機制或強化既有機制。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Gartner, Gartner Poll Finds 45% of Executives Say ChatGPT Has Prompted an Increase in AI Investment (May 3, 2023), https://www.gartner.com/en/newsroom/press-releases/2023-05-03-gartner-poll-finds-45-percent-of-executives-say-chatgpt-has-prompted-an-increase-in-ai-investment (last visited June 30, 2023). [2]McKinsey, The economic potential of generative AI: The next productivity frontier (June 14, 2023), https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-AI-the-next-productivity-frontier#introduction (last visited June 30, 2023). [3]Gartner, supra note 1. [4]Zoe Kleinman, Philippa Wain & Ashleigh Swan, Using AI for loans and mortgages is big risk, warns EU boss (June 14, 2023), https://www.bbc.com/news/technology-65881389 (last visited June 30, 2023). [5]Ryan Browne & MacKenzie Sigalos, A.I. has a discrimination problem. In banking, the consequences can be severe (June 23, 2023), https://www.cnbc.com/2023/06/23/ai-has-a-discrimination-problem-in-banking-that-can-be-devastating.html (last visited June 30, 2023). [6]Group-IB, Group-IB Discovers 100K+ Compromised ChatGPT Accounts on Dark Web Marketplaces; Asia-Pacific region tops the list (June 20, 2023), https://www.group-ib.com/media-center/press-releases/stealers-chatgpt-credentials/ (last visited June 30, 2023). [7]OpenAI, March 20 ChatGPT outage: Here’s what happened (Mar. 24, 2023),https://openai.com/blog/march-20-chatgpt-outage (last visited June 30, 2023).