聖淘沙開發公司就″Sentosa″商標對醫材企業提起侵權訴訟

  新加坡聖淘沙發展局(Sentosa Development Corporation, SDC)(以下簡稱聖淘沙發展局)於今(2018)年1月30日向新加坡高等法院(High court)起訴,主張一家名為Vela的醫療器材企業(包含Vela Operations Singapore, Vela Diagnostics等子公司,以下合稱Vela公司),在其一系列檢測HIV及茲卡病毒的醫材產品中使用″Sentosa″(下稱系爭商標)之行為,侵害了聖淘沙發展局的商標權,要求其停止使用。

  聖淘沙發展局隸屬於新加坡貿易與工業部,為專責推動聖淘沙觀光活動的法人機構,系爭商標早在2005年於新加坡申請註冊,其保護範圍以服裝、飾品、書籍、玩具與飲品等涉及觀光之類別為主。截至2015年止,聖淘沙發展局更將保護範圍擴及馬來西亞、印尼及中國大陸。該局表示,系爭商標在過去長達45年的經營下,已成為新加坡著名商標。Vela公司將之作為其醫材品牌的行為,不僅會淡化,甚至減損系爭商標的識別性,造成消費者混淆誤認,將該檢測醫材與聖淘沙發展局產生不當連結,為蓄意藉機炒作。

  事實上,Vela公司曾欲將″Sentosa″申請註冊商標,卻於2012年11月被駁回。這次Vela公司則提起商標無效之反訴回應聖淘沙發展局的訴訟,其認為系爭商標係指稱新加坡當地觀光渡假勝地的地理名詞,縱非地理名詞,在馬來語中亦屬稱頌和平寧靜之用語,無法代表特定之服務或產品,根本欠缺商標識別性要件,系爭商標應屬無效。

  本案涉及新加坡司法實務有關地理名詞是否具備商標識別性之判斷標準,故其後續發展,值得追蹤觀察。

「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

相關連結
你可能會想參加
※ 聖淘沙開發公司就″Sentosa″商標對醫材企業提起侵權訴訟, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7964&no=67&tp=1 (最後瀏覽日:2025/11/21)
引註此篇文章
你可能還會想看
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

美國眾議院通過綠色化學研發法案

  美國眾議院本(9)月通過「2007年綠色化學研究發展法案」(The Green Chemistry Research and Development Act of 2007),其目的在要求總統建立「綠色化學研究發展計畫」(Green Chemistry Research and Development Program),統籌改善聯邦政府對於綠色化學研發、教育宣導及技術移轉等活動之資源投入,而綠色化學則是指那些依安全與有效生產程序製造高品質產品時、能減少使用或產生毒性化學物質之化學產品或製程技術。美國化學協會(American Chemical Society)讚許眾議院通過本法案是睿智的舉動,表示發展綠色化學最能證明經濟和環境得同時併進,發展綠色企業實務,改善藥學加工及本土營建產業以迎刃氣候變遷及能源危機等挑戰。   本法案並要求自明(2008)年起,編列經費由以下政府單位合作執行本計畫,即國家科學基金(National Science Foundation)、國家標準技術研究院(National Institute of Standards and Technology)、能源局(Department of Energy)及環保署(Environmental Protection Agency)。參議院在過去兩屆都通過類似的法案,尚等待參議院支持通過相同法案,以獲得生效。   為減低對石化原料的依賴、發展生物經濟,美國政府積極投入促進綠色科技、生質科技之研發活動,例如從農林廢棄物或副產品或其他來源開發再生性原物料供綠色化學使用。此外,美國政府亦資助建立了生質(biomass)能源及產品的網路圖書館(BioWeb);BioWeb所收錄的生質科技資訊、文獻,許多都是來自大學或國家實驗室著名研究人員,都會先經各領域專家進行嚴格的同儕審查(peer-review),再開給所有公眾瀏覽;BioWeb將會持續蒐羅各種基礎及應用科學知識,並擴充各種經濟及政策相關資訊。BioWeb的理想目標,是擴大規模成為最大最有價值的生質燃料、能源及產品公共資料庫。

美國加州法院期透過數位方式管理證據生命週期,帶動司法效率提升

2024年9月23日起,美國加州洛杉磯高等法院於康普頓(Compton)與比佛利山莊(Beverly Hills)法院試行數位證據系統,旨於簡化小額訴訟程序,使訴訟當事人透過數位證據系統平臺進行數位證據開示,節省郵寄實體證據副本所花費的時間、人力、物力。洛杉磯高等法院為全美最大之一審法院,法院轄區人數逾1千萬人,其所推動之數位證據系統具參考價值。 以下說明數位證據系統的重點: 1.數位證據系統適用的案件範圍 適用於「小額訴訟當事人於聽證會前之證據開示程序」。 關於證據開示程序,訴訟當事人應至少於訴訟聽證會前10 日完成證據開示。證據開示程序的傳統做法為當事人將證據副本「郵寄」給對造,而數位證據系統允許訴訟兩造於聽證會前,以「電子方式」交換證據。 依加州法規定,小額訴訟指原告向被告(個人、企業或政府單位)請求給付的金額在1.25萬美元以下。 2.數位證據系統可上傳的數位證據類型 訴訟當事人輸入「案號、聽證會具體日期、個人資訊(電子信箱或手機號碼)及6位數字金鑰」以驗證身分、註冊數位證據系統帳號後,可於數位證據系統分批上傳多種文件格式,包含時戳證據(Time stamp evidence)、圖片、影片、文字檔(如Word、OpenOffice)、PDF檔案、HTML檔案、簡報檔案等。並勾選上傳資料之當事人身分(原告或被告),確認上傳證據。 當事人應於確認上傳之每筆證據的註解中,簡述(briefly)該證據資訊。 經當事人確認、成功上傳至數位證據系統的每筆證據,都會擁有其唯一的(unique)證據編號(Exhibit Number)。 該系統最終會製作出一份「涵蓋該案件所有數位證據資訊的證據清單(Exhibit List)」PDF檔案,包含:案號、數位證據編號、證據縮圖及證據之簡述資訊等資訊,以便當事人依證據清單,參考(refer to)證據編號進行證據開示。 3.數位證據系統的檔案權限控管之設定 (1)上傳、編輯、刪除權限 訴訟當事人可上傳數位證據。 於系統上傳、未確認送出數位證據的階段,當事人則可編輯、刪除數位證據。 (2)線上瀏覽權限 上傳證據之當事人、司法人員擁有線上瀏覽「所有經當事人確認上傳之數位證據」的權限。 於系統確認數位證據後,上傳證據之當事人可於系統「勾選欲共享之數位證據」後,輸入對造之姓名、電子信箱,與對造共享其指定之數位證據。 (3)下載權限 訴訟期間至結案後60日內,訴訟兩造均可於數位證據系統下載數位證據。 4.證據於數位證據系統的保存期限 於小額訴訟結案後60日內,系統將自動刪除該案上傳之數位證據。 美國加州推動數位證據平臺,使當事人於平臺驗證身分、上傳時戳等數位證據,由平臺產出涵蓋案號、證據編號及證據資訊之證據清單,透過系統之權限控管加強證據管理,以數位證據開示減輕傳統證據開示程序之負擔。關於司法資料交換,參照我國由司法院、法務部、臺灣高等檢察署、內政部警政署及法務部調查局於2024年4月正式啟用之「司法聯盟鏈共同驗證平台」,以「b-JADE證明標章」作為數位資料管理之標準,透過數位資料歷程管理與資料存證機制,鞏固證物保管機制。 上述之國內外趨勢之資料管理之作法可被資策會科法所發布之《重要數位資料治理暨管理制度規範(下稱EDGS)》所涵蓋,美國加州數位證據系統,透過管理證據生命週期之各階段,首先由當事人上傳、確認證物資訊及建置清單;其次設有不同程度的檔案使用權限;並訂有證據資料之保存期限,以便進行證據管理、加速司法訴訟之證據開示程序。而為方便資料管理者控管數位資料,EDGS同樣強調資料之生命週期管理,由「檔案標題或檔案的相關資訊,需要能對應特定的數位資料」,輔以建立「資料清單」有助於盤點多筆資料。並透過「控管資料權限」等保護措施,搭配「評估資料的維護期限」,以達到管理資料歷程的目標。建議企業將EDGS納入資料管理規劃,確保資料管控有方。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國CIPU報告指出「智財管理者與企業經營者須具備充足之智慧財產權素養,以處理日常業務上的智慧財產權議題」

美國The Center for Intellectual Property Understanding(CIPU,以提高人們的智慧財產管理素養和提倡阻止侵權行為為宗旨的教育推廣非營利組織)於2025年2月19日發布之「Manager and Entrepreneur IP Experience: The Limitations of On the Job Learning」報告指出,於美國從事智慧財產權的美國商業人士於智慧財產權相關問題時有兩大現象,包括:專利人員具備基本營業秘密素養之重要性與日常商務活動之商標、著作權問題日趨普遍。 針對前者,根據Ocean Tomo發布的市場研究,從1975年到2020年,無形資產佔整公司整體價值從17%提升至90%,可見智慧財產權在國際市場的重要性,這也表示有更多不同領域的專業人士在參與處理專利、著作權及商標之問題,包括非法律專業人士,例如工程師、行銷策略師和其他來自教育領域之人員等,但是這些人員之所學很少涉略智慧財產,將導致無法確實有效的因應智慧財產議題,進而造成付出代價高昂的溝通障礙以及難以認定專利是否具備商業應用等負面影響。而一些從事專利領域的人員指出,當了解營業秘密的重要性,將可使從事處理智慧財產相關工作的人員決定是否要保密抑或揭露公開揭露這些資訊。 至於後者,在本篇報告相關的研究指出,高商標註冊率和高獲利及股票回報價值的整體無形資產間存在正向關係。許多受訪者還提到透徹了解商標法對於發展品牌、降低責任風險的方式至關重要。對於生成式AI的領域的企業家,因為侵權和合理使用問題持續存在,所以著作權意識的重要性也隨之提升。而為公司管理著作權資產的專業人士時常有管理多樣化資產的機會,例如廣播、串流媒體的權利金及整個產業鏈的製作成本等。 因此,對於時常接觸智慧財產之產業之相關人員而言,應提供更多智慧財產權相關課程,開發可存取、使用者友善的資源,以彌平從事任何形式的智慧財產權的專業人員法律素養之差距,進而使這些人員足以應對日常業務上可能面臨的智慧財產問題。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP