歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。
指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。
指引的主要內容包括:
個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。
禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。
GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。
工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。
對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。
「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。
工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。
在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。
本文為「經濟部產業技術司科技專案成果」
當前科學家正極力從廢棄的生物物質(biomass)中,尋找可以做為燃料使用的資源(biofuel)。使用生物燃料的概念與全球氣候變遷以及石油價格一再攀高有關,生物燃料是指在不影響食物供應的前提下,使用木材、稻桿或麥桿、庭園廢棄物等作為第二代的燃料來源。不過在鼓勵發展生物燃料之餘,發展此一領域之技術卻亦有不可忽略的問題有待解決。 以英國為例,英國法律規定在2010年以前,英國政府必須確保所有公路運輸使用的燃料中,至少有5%是使用生物燃料;而最近英國的能源檢視報告則建議,在2015年前,此項生物燃料使用的門檻值應達10%。英國國家非食用作物研究中心(National Non-Food Crops Centre, NNFCC)近期也提出報告,指出英國每年農作收成後皆剩餘大量的小麥、甜菜,若能輔以更多的政府促進措施,例如租稅減免,則達成2010年5%的門檻指標,並非難事。不過若想要達成2015年10%的指標,英國政府則必須另外從國外進口生物燃料。 生物廢棄物的利用指的是把各地方的廢棄物以及非食用作物拿來轉化成為生物燃料。使用生物燃料最大的缺點是建置成本(start-up costs)過高,舉例來說,使用甜菜或黃豆來生產生質柴油(biodiesel)的成本,每英噸約為700至800歐元,其中把生物廢棄物液態化的過程(biomass to liquids (BTL) process),約需每英噸450至500歐元;而要建置一個第一代生物燃料廠乃至運作,其投資費用高達5千萬歐元,第二代生物燃料的生產所需建置成本,則可能為前述數字的五至十倍。有鑑於此,NNFCC透過經濟模式的運算,建議英國政府應對第二代生物燃料廠提供每公升至少35%的租稅減免優惠(目前英國政府僅給予每公升20%的租稅減免優惠),始能鼓勵民間部門進行相關投資。 另一項發展生物燃料的隱憂則是,由於生物燃料與食物的來源都是取自於自然界的同一資源,發展生物燃料是否反而可能造成食物與燃料的爭戰中,侵蝕自然界的資源,最後反而導致各種價格的上升。
日本經產省修正〈電子商務交易及資訊商品交易等準則〉日本經濟產業省於2018年12月19日修正「電子商務交易及資訊商品交易等準則」(電子商取引及び情報財取引等に関する準則,以下稱「本準則」),主要係因應2018年《不正競爭防止法》在促進資料利用之環境整備方面,以及《著作權法》在應取得著作權人同意之行為範圍部分之修正。 本準則首次公布於2002年3月,係經產省透過學界、產業界及金融界專家、相關主管機關、消費者等各方合作,整理民法等各相關法規釋疑而成,因此,須隨著法規修正更新本準則中的法規適用、爭點、說明等內容。經產省期能透過本準則提高交易當事人對電子商務交易及資訊商品交易相關市場的可預見性(foreseeability),並促進交易。 本準則此次修正相關重點如下: 於網站上販售或公布用以安裝程式或存取、複製數位內容(digital content)及程式之帳號及密碼者,應負相關衍生之法律責任。 針對透過網路蒐集、輸出、於內部網路登載、投影他人著作物等利用行為者,加以限制規範。 若學校授課、企業培訓係使用網路進行遠距教學,或遠距教學服務之供應商有償向學校、企業提供課程而違法利用他人著作物者,則學校、企業、服務供應商須依著作權法負相關法律責任。 使用者(被授權人)基於契約取得供應商(授權人)之同意得以使用資訊商品,縱使該資訊商品之智慧財產權(著作權、特許權)受讓予他人,使用者仍得繼續使用該資訊商品。 因體驗版之手機應用程式、軟體、共享軟體,對使用功能或使用期間有所限制,若行為人違法散布解除限制方法於網路者,則行為人應負之法律責任。 向第三人提供全部或部份有償之資料集(dataset)等行為者,加以限制規範。 針對使用P2P共享軟體將檔案上傳至網路、自網路上下載以及提供P2P共享軟體等行為,就是否違反著作權法進行討論。 拍攝到第三人著作物之合理使用。
OECD就全球企業最低稅負制發布避風港規則經濟合作暨發展組織(下稱OECD)於2022年12月20日發布全球企業最低稅負制(即第二支柱,下稱最低稅負制)的「避風港與罰款免除規則」,再於2023年2月2日發布進階行政指引。系爭規則與指引旨在協助跨國企業降低法律遵循成本。 經蓋最低稅負制為防免跨國企業以稅捐規劃(如移轉訂價等方式)持續侵蝕稅基,透過實施補充稅(Top-up Tax)制度,並配合所得涵蓋與徵稅不足支出等原則,即向上或向下分配等方式,確保全球收入逾7.5億歐元的跨國企業及其所有經濟實體的個別有效稅率均不低於15%。 經上述補充稅制度看似簡單,惟其實施同時涉及各國相互合作與彼此補充稅間可能的零和遊戲,徵之各國境內稅捐制度調整、現有國際稅捐規則的淘換與新國際稅捐規則的建立等交互作用下,導致OECD與最低稅負制有關文件繁多,內容細項更不計可數,增添不確定性;另外,包含我國在內的許多國家均表示將於2024年起陸續實施全球企業最低稅負制,再增添急迫性。此不確定性與急迫性的雙重夾擊,致使受規範跨國企業法律遵循成本持續增加。 經準此,為避免最低稅負制不當限制跨國企業發展,甚至有害全球經濟,OECD提出避風港條款,使位於高稅負或低風險稅捐管轄區的跨國企業或其經濟實體得減免其補充稅或簡化其計算基礎等,提高補充稅制度確定性以協助降低跨國企業法律遵循成本。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」