新加坡陸路交通管理局(Land Transport Authority, LTA)與南洋理工大學NTU及JTC共同宣布建立新加坡的第一個自駕車測試中心,在裕廊東創新特區(Jurong Innovation District)。
其中心設立的目的為協助2016年建立的卓越自駕車測試與研究中心(Centre of Excellence for Testing & Research of AVs–NTU, CETRAN)建立自駕車試驗標準與認證。自2015年來新加坡已逐步建立道路駕駛場域,但此為第一個自駕車測試中心。
此自駕車測試中心的特點在於其充分模擬道路之建設,使自駕車輛可測試與其他車輛或道路基礎設施間的通訊與互動,因此此中心設計並複製模擬真實道路環境。
包含具有1. 道路燈光;2. 專用短距通訊信號發射器; 2. 下雨模擬器;3.洪水模擬器;4. 模擬大樓阻隔,以模擬衛星受干擾的情況; 5. 彎道;6. 道路突起與斜坡;7. 巴士站等設備。其中並設置360度的閉路電視監視系統(CCTV):提供LTA監督與研究自駕車行為,並會將資訊回傳至陸路交通局的智慧交通系統中心,以分析並評估自駕車的上路可行性。
本文為「經濟部產業技術司科技專案成果」
為禁止藥廠間持續利用「給付遲延和解協議」(pay-for-delay settlements)來延遲低價學名藥品上市,美國參議院司法委員會(Senate Judiciary Committee),日前已表決通過由參議員Herb Kohl 所提之「保障低價學名藥品近用法草案」 (Preserve Access to Affordable Generic Drugs Act 【S. 369】),並已提交兩院,進行後續之討論及審查。而就該新法草案內容,大致上,是為解決品牌藥廠因採逆向給付(Reverse Payment)和解協議以阻礙學名藥品上市時,將帶來長期用藥與醫療成本增加等問題之目的而設。 而就前述所提及之訴訟協議模式來說,原則上,在品牌藥商為解決藥品專利訴訟問題之前提下,透過給付學名藥品廠商數百萬美元報酬(即補償金)之方式,來做為換取學名藥廠同意並承諾願將該公司學名藥產品延緩上市條件之對價,並藉此以保存系爭藥品原先既存之市場利潤。而對此類將嚴重影響大眾日後近用低價藥品權益之和解協議,美國聯邦貿易委員會(Federal Trade Commission;簡稱FTC)業已於近期內,作出完整之分析報告,其指明,若政府能終止此類和解協議,除將可於往後十年間,可為聯邦政府減低近120億美金之預算支出外;同時,亦可為民眾節省下近350億美金之醫療成本。 此外,由於受FTC該份分析報告之影響,於先前司法委員會之表決過程中,委員對此類訴訟和解所採之態度,也產生重大轉變,亦即,其從最初肯認可提出充分證據並證明將不會損及正常藥廠間競爭之和解協議,轉而改為,應嚴格限制此類訴訟和解協議之產生;同時,為嚇阻藥廠間給付遲延訴訟協議之達成,於此項新法草案中,亦新增相關處罰之規定。 最後,參議員Kohl強調:「一旦此項草案通過,除將可終結過往那些罔顧消費者權益之不當競爭行為外;從長期影響之角度來看,該法案亦可為公眾省下每年約數十億美金之用藥花費」。。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
以法制工具支援文化創意產業之發展與推動-文化創意產業發展法及相關配套子法 美國眾議院通過電信基礎設施安全四大法案,以防止採用構成國家安全風險的設備美國眾議院(United States House of Representatives)於2021年10月20日通過安全設備法案(Secure Equipment Act)、通訊安全諮詢法案(Communications Security Advisory Act)、資通訊科技戰略法案(Information and Communication Technology Strategy Act)與國土安全部軟體供應鏈風險管理法案(DHS Software Supply Chain Risk Management Act),以提高網路之可信任度、防止採用構成國家安全風險的設備、支持小型通訊網路供應商,並促進產業供應鏈的經濟競爭力。美國總統拜登(Joseph Robinette Biden Jr.)於同年11月11日完成簽署《安全設備法》。 《安全設備法》旨在禁止聯邦通訊委員會(Federal Communications Commission, FCC)頒發設備許可予構成美國國家安全風險之公司,其目的係為防止美國的網路系統遭受中國大陸設備的監控,保護美國公民的隱私與安全。近年來,美國以國家安全與技術、隱私保護為由,逐步以政府禁令或動用政府影響力,防堵華為、中興等其認為與中國政府關係密切之中國通訊設備業者。自2019年5月15日美國白宮頒布之第13873號行政命令,至2021年10月20日美國眾議院通過電信設施基礎安全四大法案,並美國商務部於隔日即發布「禁止出售、出口駭客監視工具予曾有侵犯人權紀錄的專制政府及地緣政治之敵人」等規定,各種限制手段展現美國保護國土安全之決心。 此外,《通訊安全諮詢法案》、《資通訊科技戰略法案》與《國土安全部軟體供應鏈風險管理法案》分別就通訊網路的安全性、可靠性與操作性;資通訊技術供應鏈報告(例如:定義何謂「對美國經濟競爭力至關重要的資通訊技術」等)」;以及資通訊技術或服務合約之指導方針如何改善國家網路安全等相關事項予以規範。目前,此三大法案皆於參議院二讀後提交至委員會,後續發展應密切關注。