不爽貓(Grumpy Cat)於2012年於社群網站曝光後爆紅後,不爽貓主人辭去工作成立「不爽貓公司(Grumpy Cat Limited)」,專心經營不爽貓事業並推出馬克杯、服飾等週邊產品,以及參與各類跨界合作等。
2013年「手榴彈飲料公司(Grenade Beverage)」以15萬美元合約取得不爽貓圖像之授權,得以販售以「Grumpy Cat Grumppuccino」為名且印有不爽貓圖像之冰咖啡品項。然而在2015年「不爽貓公司」發現該圖像進而印製在烘焙咖啡與T恤上,已超出原本約定之使用範圍,而對「手榴彈飲料公司」提出著作權及商標之侵權及違約訴訟。
「手榴彈飲料公司」負責人桑福德父子(Nick and Paul Sandford)反訴主張「不爽貓公司」未如當初規畫盡公司營運之協助,造成「手榴彈飲料公司」潛在之營收損失而求償1,200萬美元,包括:未讓不爽貓與喜劇演員威爾法洛(Will Ferrell)及傑克布萊克(Jack Black)參與電影演出、「不爽貓公司」僅在社群網站張貼17則冰咖啡之行銷貼文、「不爽貓公司」不重視冰咖啡事業因而在脫口秀節目中脫稿演出等。
然而,加州南區聯邦地方法院陪審團並未因以上指控而猶疑,認定「手榴彈飲料公司」負責人侵害「不爽貓公司」之著作權與商標,應支付71萬美元作為賠償,至於違反授權約定部分則以1元作為象徵性賠償。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
「不被追蹤網路資訊保護法」(Do Not Track Me Online Act of 2011)的內容為法律規定企業必須提供選項給消費者選擇退出不被網路追蹤的機制,例如廣告商為了廣告的行銷,以網路技術追蹤消費者軌跡,廣告商必須提供消費者退出被追蹤的選項,給消費者作選擇,主要的目的在保護消費者資訊不被網路技術追蹤而洩漏隱私,若是此法案通過後,可以藉此保護消費者的網路隱私權。 在2010年12月由美國聯邦交易委員會(U.S Federal Trade Commission, FTC)的網路隱私報告中初步提出Do Not Track Me Online Act,美國國會議員在2011年提出此法案進行討論,若是通過後,將會有效限制線上廣告及社群媒體追蹤消費者使用網路的行為,並且防免其將個人資料分享予其他企業,及有效限制線上廣告及社群媒體追蹤消費者使用網路。對於行政機關來說,能夠藉此協助美國聯邦交易委員會建構整體的不被追蹤網路法案標準。若業者未遵守此法案提供退出機制,美國聯邦交易委員會將可能提起不公正及詐欺訴訟,而發動此一訴訟的人員為各州檢察總長。 為了保護隱私,不被追蹤網路資訊法案的提出十分需要,對於企業是否能追蹤消費者的網路活動,消費者因此擁有選擇權。在美國聯邦交易委員會去年12月初步提出此法案後,許多網路瀏覽器例如Mozilla及Explorer紛紛改進技術,以提早因應不被追蹤法案的實施,而廣大消費者團體的也紛紛支持此法案,認為可以因此保護消費者的網路隱私權。
英國科學辦公室發布分佈式分類帳技術報告,提出八大建議2016年1月, 隸屬英國商業、創新和技術部 (Department for Business, Innovation and Skills,BIS)的科學辦公室(Government Office for Science)發布「分佈式分類帳技術:區塊鏈以外(Distributed Ledger Technology:beyond block chain)」研究報告。本篇報告由產官學界合作完成,主要在評估分佈式分類帳技術可以運用在哪一些公私領域,並決定政府以及私人應該採取哪些行動以促進分佈式分類帳技術可被有益運用,並避免可能帶來的傷害。 該份研究報告認為,分佈式分類帳技術可在多個領域協助政府機構,包含徵稅、提供福利、發行護照、土地登記、確保商品供應鏈並且確保政府記錄與服務的完整性。相較於其他網路系統,分佈式分類帳技術較不易受駭客攻擊,而且由於每個参與者都有一份帳簿副本,如果有惡意竄改的狀況,也可以輕易被發現,但這不表示分佈式分類帳技術就不會被駭客攻擊。 數位五國(Digital 5,D5)之一的愛沙尼亞,已多年實驗運用分佈式分類帳技術於公領域服務多年。愛沙尼亞政府透過私人公司運用分佈式分類帳技術建制「免金鑰簽名設施(Keyless Signature Infrastructure,KSI)」,KSI允許愛沙尼亞公民驗證其在政府資料庫資訊的完整性,並避免內部人透過政府網路從事非法活動。KSI確保公民資訊安全以及準確,因而可協助愛沙尼亞政府提供數位化的公司登記以及稅務服務,減少政府以及社會大眾的行政作業負擔。 除此之外,分佈式分類帳技術也有助於確保商品以及智慧財產權的所有以及出處。例如Everledger此一系統可用於確保鑽石的身分,從礦產、切割到銷售,可減少並避免欺詐以及「血鑽石」進入市場。 簡而言之,分佈式分類帳技術提供政府可減少詐欺、腐敗、錯誤以及紙上作業成本的框架,並透過資訊分享、公開透明以及信任,具有可重新定義政府與公民關係的潛力。對於私領域而言也具有同樣可能性,報告特別提出可透過分佈式分類帳技術發展「智慧契約」,可增加信任度並提高效率。據此,本報告針對政府部門提出八大建議: (1) 應成立專責部門,並與產業、學界緊密合作,並應考慮成立臨時性的專家諮詢團隊。 (2) 英國的研究社群應該要投入研究確保分佈式分類帳技術具備可即性、安全性以及內容準確性。 (3) 政府應支持為地方政府成立分佈式分類帳技術實地教學者,匯聚所有測試技術以及其運用的所需元素。 (4) 政府需要思考如何為分佈式分類帳技術建立妥適的法制框架。法規需要配合新科技應用技術的發展而進步。 (5) 政府應該與產學合作確保相關標準可以符合分佈式分類帳技術及其內容完整性、安全性以及隱私的需求。 (6) 政府應與產學合作確保最有效率以及最可用的身分認證網路協議可為個人及組織所使用,這項工作應與國際標準的發展與執行緊密連結。 (7) 政府應對分佈式分類帳技術進行試驗,以評估該項技術在公領域的可行性。 (8) 建議成立跨部門的利益群體,結合分析以及政策群體,以生成並發展潛在使用案例,並且在公民服務中提供具備知識的專家人員。 除了八大建議,管理與法制上,本報告指出分佈式分類帳技術具有兩種管理規範:法律規範以及技術規範。法律規範是「外部」規範,法律規範可能會被違反,緊接著面臨違法處罰的問題。技術規範是「內部」規範,假如違反技術規範,「錯誤(error)」產生無法運作,因此「規範」本身就可以確保會被遵循。換句話說,技術規範可以節省法律規範的執法成本。另外一方面,分佈式分類帳技術為去中心化技術,如果要以法制管理,也只能在参與者身上施加法律義務,例如Bitcoin,只能對於提供Bitcoin交易服務的平台施加法律義務。美國紐約州金融服務部所發行的比特幣交易執照BitLicnese即為一例。因此,基於去中心化的特性,報告建議政府單位應該要儘量参與技術標準的制定,並且配合技術標準制定相關法律,法律規範與技術規範兩者應該要交互影響。
巴西政府與美國藥商達成專利協定經歷十天的談判,巴西政府與美國製藥廠商 Abbott Laboratories終於達成專利協定。在此之前,巴西政府表示將開始製造一種主要抗HIV/AIDS藥物,Kaletra,的學名藥。此舉也造成製藥商的壓力,使其同意在今後六年降低Kaletra的價格,以維持該藥物在巴西的專利權,巴西也將得到Kaletra的下ㄧ代新配方。 巴西目前每年需給付約1.07億美金(約34億台幣)購買Kaletra,並免費提供給國內病患。 Abbort Laboratories 同意在不提高整體費用的前提下治療更多病患,為巴西節省超過2.5億美金。製藥商表示巴西是非洲之外取得最多價格讓步的國家。另外,若此藥物的專利權被破壞,製藥公司也將不敢投資進一步的研究。 此談判受到許多開發中國家的關注,在這些國家約有 3600 萬人感染 HIV 病毒。巴西政府在最後一刻改變心意,同意不破壞專利權的舉動,必定會激怒許多 HIV 遊說團體。這些團體一再敦促巴西政府破壞 Kaletra 之專利權。他們認為,根據世界貿易組織法則( World Trade Organization rules ),破壞該藥物專利權是合法的,並且有助於降低全世界抗逆轉濾過性病毒藥物的價格。
英國資訊委員辦公室(ICO)發布沙盒執行過程中所觀察到的關鍵議題2019年9月英國資訊委員辦公室(Information Commissioner's Office, ICO)啟動沙盒計畫(ICO Sandbox)測試階段(beta phase),由ICO所選10個測試專案,透過解決當今社會問題,例如如何減少暴力犯罪、大學如何促進學生的心理健康、新技術如何改善醫療保健等,期能促進公眾利益。 各專案在滿足創新性和可行性前提下,同時也面臨著複雜的資料保護議題,因此ICO持續與各專案溝通,提供其應用現有個資保護指引之建議,如歐盟一般資料保護規則之資料保護影響評估指導文件(Guide to the GDPR - Data protection impact assessment)、資料保護自我評估工具包(Data protection self-assessment toolkit)等。自2019年3月底開始(受理申請)迄今,ICO沙盒執行過程中所觀察到的關鍵議題如下: 公部門資料應用效益:部份參與者正在克服與公部門進行歷史資料共享,或是如何整合應用大數據等。個人資料與新技術應用,必須與資料主體的權利和自由進行權衡。 同意:確保各方對於「同意」(Consent)之理解,以弭平差異,同時向公眾提供透明資訊。 新技術的挑戰:應用語音生物辨識(voice biometrics)、臉部辨識技術(facial recognition technology, FRT)等,需要在適當基礎上處理特殊類別資料。 資料分析(Data analytics):以符合資料保護的方式進行資料分析,處理特殊類別資料的適法性,評估處理過程中的風險,並檢查可能用於資料分析的資料來源,確保符合目的之應用。 未來的6個月,ICO將持續與各專案合作,使其為有效的解決方案,為公眾提供創新合規之產品與服務,並成為未來結合資料保護和創新應用之規劃藍圖,以奠定隱私保護的基石。