2018年1月10號,美國交通部部長趙小蘭於出席內華達州拉斯維加斯之消費者科技聯盟(Consumer Technology Association)大會時表示,美國交通部正在研擬發布新版之聯邦自駕車政策3.0(Federal Automated Vehicle Policy 3.0, FAVP3.0)以因應自動駕駛技術於未來對安全性、機動性與消費者權益之衝擊。該聯邦自駕車政策3.0將會是一個綜合整體運輸業概況之自動駕駛政策,其將讓自動化運輸系統,包括,車子、貨車、輕軌、基礎設施與港口得以安全的整合。
為了達成上述目的,且讓公眾的意見得以協助辨識美國聯邦法規必須配合修正之部分,並鼓勵更多的創新研發。美國交通部於其網站上也發起了數個自動化車輛技術之意見徵集,讓其能更準確的找出當前美國法規對於自動駕駛技術創新所造成之阻礙。
該意見徵集主要分為四項,第一項是由美國交通部聯邦公路管理局(Federal Highway Administration, FHWA)主管,針對如何將自動駕駛系統整合進入公路運輸系統之資訊徵求書(Request for Information, RFI)。
第二項與第三項則是由聯邦公共運輸局(Federal Transit Administration, FTA)分別針對自駕巴士研究計畫(Automated Transit Buses Research Program)與移除相關障礙所發出之意見徵詢書(Request for Comments, RFC)。
最後一項則是由交通部國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)主管,針對移除自駕車法規障礙所發布之意見徵詢。
本文為「經濟部產業技術司科技專案成果」
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)
美國最高法院認定州政府得對電商業者課徵銷售稅美國最高法院在今(2018)年1月12日決定接受南達科塔州的上訴,就South Dakota v. Wayfair一案(下稱Wayfair案)進行審理,以決定州政府是否有權對網路零售業者課徵銷售稅。依據最高法院在1992年Quill v. North Dakota (下稱Quill案)所確立之原則,若網路零售商在該州無實體呈現 (physical presence),州政府即不得對該零售商向該州居民所銷售之貨物課徵銷售稅。 在1992年Quill案中,最高法院認為州政府對於遠距零售者(remote retailer)課稅,將違反潛在商務條款(dormant commerce clause),理由是對於無具體呈現的零售商課稅,將使其面對許多不同的課稅管轄權,造成零售商巨大的負擔,並增加州際商務的複雜性。南達科塔州認為科技的進步已使得零售商商所面臨課稅的複雜度降低,故在2016年通過法案對無實體呈現之電商業者課稅,因而引發相關爭訟。 本案在今年6月21日宣判由南達科塔州勝訴,判決指出隨著電子商務的成長及資訊科技的進步,課稅並不如過往會對業者造成具大的負擔,同時也可滿足正當程序與潛在商務條款的要求;此外,Quill案將會造成市場的扭曲,其所造成的稅捐保護傘將對具有實體呈現的業者造成不公平的競爭。因此認定Quill案已難以適用於現在的電子商務市場。 但本案仍有四位大法官反對,認為應由國會立法來糾正此一錯誤。因為國會並未明確授權州政府可對跨州零售交易課稅,因此才有潛在商務條款的適用,換言之,國會實際擁有立法授與各州徵收遠距交易之權力,在115期國會當中,也已經有相關的法案被提出,包括Remote Transaction Parity Act of 2017 (H.R. 2193)、Marketplace Fairness Act of 2017 (S.976)。在最高法院完成此一判決後,後續可繼續觀察美國國會是否會以立法的方式,授與州政府對跨州商業貿易課徵租稅。
俄亥俄州通過醫療用大麻合法化在俄亥俄州長於2016年6月18日簽署通過HB523法案後,俄亥俄州正式成為美國第25個將醫療用大麻合法化的州。這項法案將在今年11月生效,並且允許重症患者使用及採買醫療用大麻。 與原本在2015年11月被退回的法案相比,娛樂性用途大麻直接被排除在本次法案適用範圍外,而且不允許個人在家裡種植或是直接抽食。因此,與一般人想像中,如同荷蘭般的大麻合法化政策相當不同。 當然,某種層面上來說,這項法案對重症病患是一大福音,他們可以合法取得大麻,不再因為持有大麻而被當成罪犯。但是俄亥俄州這部法案對於大麻使用者於現實生活中情況能帶來多大的改善,仍讓人懷疑。因為在俄亥俄州現行法律及行政系統下,俄亥俄州政府並未隨著新的法案,推行相關行政措施。一般來說,在大麻合法化之區域,通常會要求雇主不得禁止員工使用與持有醫療用大麻,或是不可以因當事人有使用、持有或散佈醫療用大麻之紀錄或習慣,而拒絕錄用或是解聘之,同時,會禁止對員工施行藥物檢查。倘若雇主有前列之行為,通常會面臨處罰,例如:主管機關會取消該名雇主原先所享有之稅捐優惠或其他惠優措施。此外,員工得因雇主反禁藥之行為,對雇主提起訴訟。是以,在缺乏相關行政配套措施的情況下,俄亥俄州的大麻使用者未來在工作場所中,仍將會面臨許多挑戰以及障礙。 總而言之,俄亥俄州通過這部法案,在法律上可謂是一大里程碑,但尚與一般大眾認知的「大麻合法化」仍存有很大的差距。同時,未在行政作為上採取相對應的保障措施,仍可以想像將來醫療用大麻使用者在社會上仍將面臨許多障礙。
世界經濟合作暨發展組織(OECD)修正「隱私保護及個人資料之國傳輸指導指引」1980年09月發布的「隱私保護及個人資料之國傳輸指導指引」,當中的8大原則對個人資料保護的法制產生深遠的影響,但隨技術發展,資料傳遞所產生的風險遠較於1980年代來得複雜。2013年所發布的內容,風險管理及為全球資料流通的互動性為兩大主軸,因此,在指引中納入新的概念,包含1.國家隱私策略:有效的隱私法制是不可或缺的,但在今日國家應該將隱私保護放在更高的戰略位置、2.隱私管理程序:(以個人資料)為核心服務的機制應系統化的保護隱私、3.資料安全漏洞通知:涵蓋有權者及各別個體的通知。 在指引第一章附件的第三部份-責任的履行,增加資料控制者(data controller),應有管理程序以符合上述的原則,該管理程序需包含資料風險的評估、內部監控、通知主管機關等要求;第五個部份-國家實施則新增加隱私主管機關的設立、考量不同角色(如:資料控制者)所應遵循的行為、考量其它的配套措施,如技術、教育訓練等。 在OECD的成員國,如:日本,已開始向該國國內說明2013年版的指引,但亦有部分會員國,如:加拿大,由於指引涵蓋公部門及私部門,加拿大亦討論如何與該國的資訊近用法(Access to Information Act) 及隱私權法 (Privacy Act)建構一個完善的適用模式。指引對於未來國際資料傳輸及管理程序的建置,必然產生結構性的影響,值得持續關注。