美國交通部針對聯邦自駕車政策3.0徵集公眾意見

   2018年1月10號,美國交通部部長趙小蘭於出席內華達州拉斯維加斯之消費者科技聯盟(Consumer Technology Association)大會時表示,美國交通部正在研擬發布新版之聯邦自駕車政策3.0(Federal Automated Vehicle Policy 3.0, FAVP3.0)以因應自動駕駛技術於未來對安全性、機動性與消費者權益之衝擊。該聯邦自駕車政策3.0將會是一個綜合整體運輸業概況之自動駕駛政策,其將讓自動化運輸系統,包括,車子、貨車、輕軌、基礎設施與港口得以安全的整合。

  為了達成上述目的,且讓公眾的意見得以協助辨識美國聯邦法規必須配合修正之部分,並鼓勵更多的創新研發。美國交通部於其網站上也發起了數個自動化車輛技術之意見徵集,讓其能更準確的找出當前美國法規對於自動駕駛技術創新所造成之阻礙。

  該意見徵集主要分為四項,第一項是由美國交通部聯邦公路管理局(Federal Highway Administration, FHWA)主管,針對如何將自動駕駛系統整合進入公路運輸系統之資訊徵求書(Request for Information, RFI)。

  第二項與第三項則是由聯邦公共運輸局(Federal Transit Administration, FTA)分別針對自駕巴士研究計畫(Automated Transit Buses Research Program)與移除相關障礙所發出之意見徵詢書(Request for Comments, RFC)。

  最後一項則是由交通部國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)主管,針對移除自駕車法規障礙所發布之意見徵詢。

本文為「經濟部產業技術司科技專案成果」

※ 美國交通部針對聯邦自駕車政策3.0徵集公眾意見, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7986&no=67&tp=5 (最後瀏覽日:2025/12/11)
引註此篇文章
你可能還會想看
2011年個人資料外洩事件與前年相比減少128件,總數為1551件-預測賠償金額比前年擴大1.5倍

  日本2011年個人資料外洩事件及事故的件數比前年減少為1551件,但洩漏的個人資料筆數卻超過前年一成以上,約有600萬筆個人資料外洩。從數字來看預估的賠償金額是超過1900億日幣。   日本網路資安協會(JNSA)與資訊安全大學研究所的原田研究室及廣松研究室共同針對報紙集網路媒體所報導的個人資料外洩相關事件及事故所進行的調查所做的結論。   新力集團旗下的海外公司雖然發生合計超過1億筆的大規模個人資料外洩的意外,但此一事故並無法明確判別是否屬於個人資料保護法的適用範圍,因此從今年的調查對象裡排除。   在2011年發生的資料外洩事件有1551件,比起前年的1679件減少128件,大約跟2009年所發生的個人資料外洩差不多水準。外洩的個人資料筆數總計約628萬4363筆,與前年相較約增加70萬筆。平均1件約洩漏4238筆個人資料。   將事故原因以件數為基礎來分析,可以發現「操作錯誤」佔全體的34.8%為第一位,其次是「管理過失」佔32%,再接下來是「遺失、忘記帶走」佔13.7%。但以筆數來看,值得注意的是「管理過失」佔37.7%最多,但「操作錯誤」就僅有佔2.3%的少數。   再以佔全體事件件數5%的「違法攜出」就佔了全體筆數的26.9%;在佔全體件數僅有1.2%的「違法存取」卻在筆數佔了20.9%,可以看到平均每一件的受害筆數有開始膨脹的傾向。   再者從發生外洩原因的儲存媒體來看,紙本佔了以件數計算的68.7%的大多數,以USB記憶體為首的外接式記憶體佔了10.1%;但以筆數計算的話,外接式記憶體佔了59.1%、網路佔了25.5%的不同的發生傾向。   從大規模意外來看,金融機關與保險業界是最值得注意,前10件裡佔了7件。從發生原因來看,「違法攜出」及「內部犯罪」所造成的事故10件中有4件,其次是「管理過失」。規模最大的是山陰合同銀行的受委託人將業務所需的165萬7131件個人資料攜出的事故。   依據2011年所發生的事件及事故的預估賠償額是1899億7379萬日幣。遠超過前年的1215億7600萬日幣。平均一起事件預估損害賠償金額有1億2810萬日幣,每人平均預估賠償金額是4萬8533日幣。

英國建立幹細胞研究網絡

  英國財政大臣十六日在倫敦宣佈,政府將在其10年發展計劃中建立一個全國性的幹細胞研究網路,以鞏固英國在該領域的領先地位。   英國工黨政府一直對幹細胞研究提供支持,並且率先立法,允許治療性人類胚胎幹細胞研究。但是治療性胚胎幹細胞研究一直遭到人權組織的反對,使幹細胞研究機構在資金籌措方面陷入困境。為此,英國政府作出建立幹細胞研究網路的決定,無疑是為了加強英國在國際幹細胞研究領域的領先地位。   布朗當天在下議院宣佈二○○五年財政年度預算計劃時說,英國政府從二○○二年起的三年內向幹細胞研究撥款四千萬英鎊,另外,英國醫學慈善機構韋爾科姆信託公司承諾向幹細胞研究網路投資二千萬英鎊。

歐盟執委會通過關於《人工智慧責任指令》之立法提案

  歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。   《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。   歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。

OECD發布《數位化推進資料治理以促進增長和福祉》、《資料治理政策制定之數位化指南》報告

2023年5、6月經濟合作暨發展組織(Organisation for Economic Cooperation and Development, OECD)在邁向數位化計畫(Going digital Project)下陸續公布53個國家地區科學技術創新政策(science, technology and innovation policy)指標。OECD另一方面也提供許多政策工具供各政府參考,如2022年12月發布《數位化推進資料治理以促進增長和福祉》(Going Digital to Advance Data Governance for Growth and Well-being),並出版《資料治理政策制定之數位化指南》(Going Digital Guide to Data Governance Policy Making),協助應對轉型為數位治理時的潛在益處與風險。 《數位化推進資料治理以促進增長和福祉》指出,數位工具發展使資料蒐集、處理的效能大幅增加,邊際成本快速下降,為經濟、社會注入新驅動力。OECD觀察到COVID-19疫情危機中,各國政府藉多樣的資料有效追蹤疾病並做出相應對策;然而,也出現資料治理不當案例,如有勞動中介機構不慎在資料應用時加深性別勞動的不平等。因此,資料成為治理的戰略資產同時也需詳加了解資料多樣化的特性,在資料跨領域產製、流通與利用的過程中一併考量其益處與風險。 《資料治理政策制定之數位化指南》則點出三個發現,並提供相應策略做為各國政府治理參考。第一,關切資料開放同步產生的益處與風險,建議應確立風險管理的文化並建置透明且開放的資料生態系,以增加使用者的能動性,俾利人們自覺主動利用資料。其次,治理框架應平衡生態系中利害交疊的人民、企業團體、政府各部門等,藉契約範本、行為準則等機制確保決策各環節中利害關係人的參與機會和框架的一致性。第三,資料的邊際成本雖一再降低,然而進入門檻、後續管理的負擔仍重,政府應持續激勵資料的基礎建設投資,促進市場競爭並解決後進者的阻礙。

TOP