今(2018)年2月,一家成立於2013年、位於美國維吉尼亞州的雲端策略服務公司REAN Cloud Llc.以其他交易(Other Transaction, OT)模式獲得了美國國防部(Department of Defense)5年合計9.5億美金的合約,讓OT自2016年10 U.S. Code §2371b正式生效進一步確認美國國防部針對原型(Prototype)及其後續之產品開發適用OT以來[1],再次引起討論。
OT源於冷戰時期的美國,主要用於讓聯邦政府部門取得尖端國防技術的研究與發展(Research and Development, R & D)成果和原型。OT並非傳統之契約(contract)、授權書(grant)或合作協議(cooperative agreement),且法並無明確定義OT究竟實質內容為何。OT不受聯邦併購規則(Federal Acquisition Regulation, FAR)所規範,更接近一般私人商業契約,因此具備極大的合作彈性,可大幅度縮短私部門與政府合作常碰到的冗長時程。由於OT快速、彈性的這兩項特質,近年來應用於國防以外之新創或尖端科技之公私合作亦逐漸普遍。
然OT雖然簡化了政府採購的時程與限制,但同時也減少了問責可能性和透明度,因此目前只限具備美國國會授予其他交易授權(Other Transaction Authority, OTA)的聯邦政府機構得以使用OT。在美國計有太空總署(NASA)、美國國防部、美國聯邦航空總署(Federal Aviation Administration)、美國運輸部(Department of Transportation)、國土安全部(Department of Homeland Security)、運輸安全管理局(Transportation Security Administration)、衛生與公共服務部(Department of Health and Human Services)、美國能源部(Department of Energy)獲得國會授予OTA,其餘未獲OTA之政府部門僅得以在聯邦預算管理局(Office of Management and Budget)主任授權下有條件地使用OT。
尖端技術的R&D在不同領域皆有其特殊性,難以一體適用FAR,是以OT在實務運作上為兼顧持有尖端技術的公司重視速度和營業秘密之特質與採購之公平性,其運作模式通常為:聯邦政府成立某種技術領域的OT聯盟(consortium),私部門的潛在締約者可以申請加入,繳交會費並同意該聯盟的約定條款。聯盟之約定條款通常較政府採購契約來的有彈性,例如智慧財產權的歸屬是以個案個別約定。擁有OTA之政府機關嗣後可向聯盟成員徵求產品或服務白皮書,之後再從中挑選優秀者進一步繳交更詳細的產品或服務計畫書,最終經由聯盟管理機構(consortium management organization)挑選出最適者。
OT與OT聯盟的運作模式,為公私合作提供極大的法律彈性,且非常迅速。平均而言,從政府徵求白皮書到成功找到最適者,不過兩個月時間。時間與彈性乃是新創企業或尖端技術持有者與政府合作時最有疑慮之處,OT可以解決此一問題。然需注意OT在適用上仍存在諸多挑戰,例如成效難以評估、較不透明導致監督困難、智慧財產權歸屬爭議等,有待克服。
[1] 美國國防部在此前乃是遵循Section 845 of the National Defense Authorization Act(NDAA) for Fiscal Year(FY) 1994, Public Law 103-160適用OT。
美國伊利諾州伊利諾最高法院(Illinois Supreme Court)於2023年11月30日對Mosby v. The Ingalls Memorial Hospital et al.案做出判決:認定符合聯邦法規健康保險流通與責任法(Health Insurance Portability and Accountability Act, HIPAA)規定,基於「治療、付款或健康照護運作」之前提下,除病患外即使是醫療服務提供者的生物識別資訊被蒐集、利用或揭露,同樣不受伊利諾州生物資訊隱私法(Biometric Information Privacy Act, BIPA)的保護。 伊利諾州現行以BIPA對蒐集或保留任何個人的生物識別資訊(如虹膜、聲紋、指紋或生物樣本等)做了較為嚴格的限制,原則上這些資訊不能在未經當事人同意的情況下被蒐集、利用或揭露。除非是1.由醫療保健機構從患者身上蒐集的生物識別資訊;或2.根據HIPAA規定,基於進行治療、付款或健康照護運作的前提來蒐集、使用或儲存的生物識別資訊,才可例外免經當事人同意(biometric identifiers do not include information captured from a patient in a health care setting or information collected, used, or stored for health care treatment, payment, or operations under the federal HIPAA.)。然而,基於進行治療、付款或健康照護運作的前提,資料主體除接受治療或健康照護的病患外,是否涵蓋醫療服務提供者(如醫護人員),則有疑義。 本案因醫院的護理人員認為醫療院所未經同意,使用帶有指紋掃描功能的藥品櫃,來蒐集、使用或儲存了他們的生物識別資訊,因此提起訴訟。伊利諾州的地方法院和巡迴上訴法院於本案均支持原告提出的主張。然而,伊利諾州最高法院審理時則透過文義解釋以及條文結構分析之方式,認為立法者係有意於例外規定中重複使用「資訊」一詞,兩次「資訊」之內涵應有不同。故前段的資訊係指患者的資訊,而後段的資訊來源則應包含了醫療照護提供者,方符合立法者真意。 生物識別資訊風險較高,過去被認為需要取得當事人積極同意授權;於本案中伊利諾州最高法院權衡認為基於「治療、付款或健康照護運作」情境下,如本案情形係用來確保醫藥品被正確分配給需要的患者,因此對患者以外的醫療人員隱私權做出限制符合例外規定。本案揭示了個資隱私得為合理利用的情境之一,然而HIPAA對於資料傳輸較寬鬆的規範會否又與資料保護的趨勢有所違背,仍須持續關注相關案例發展。
法國國家資訊自由委員會將推出符合GDPR的人工智慧操作指引(AI how-to sheets)法國國家資訊自由委員會(CNIL)於2023年10月16日至11月16日進行「人工智慧操作指引」(AI how-to sheets)(下稱本指引)公眾諮詢,並宣布將於2024年初提出正式版本。本指引主要說明AI系統資料集建立與利用符合歐盟一般資料保護規則(GDPR)之作法,以期在支持人工智慧專業人士創新之外,同時能兼顧民眾權利。 人工智慧操作指引主要內容整理如下: 1.指引涵蓋範圍:本指引限於AI開發階段(development phase),不包含應用階段(deployment phase)。開發階段進一步可分為三階段,包括AI系統設計、資料蒐集與資料庫建立,以及AI系統學習與訓練。 2.法律適用:當資料處理過程中包含個人資料時,人工智慧系統的開發與設計都必須確定其適用的法律規範為何。 3.定義利用目的:CNIL強調蒐集及處理個資時應該遵守「明確」、「合法」、「易懂」之原則,由於資料應該是基於特定且合法的目的而蒐集的,因此不得以與最初目的不相符的方式進一步處理資料。故明確界定人工智慧系統之目的為何,方能決定GDPR與其他原則之適用。 4.系統提供者的身分:可能會是GDPR中的為資料控管者(data controller)、共同控管者(joint controller)以及資料處理者(data processor)。 5.確保資料處理之合法性:建立AI系統的組織使用的資料集若包含個人資料,必須確保資料分析與處理操作符合GDPR規定。 6.必要時進行資料保護影響評估(DIPA)。 7.在系統設計時將資料保護納入考慮:包含建立系統主要目標、技術架構、識別資料來源與嚴格篩選使用…等等。 8.資料蒐集與管理時皆須考慮資料保護:具體作法包含資料蒐集須符合GDPR、糾正錯誤、解決缺失值、整合個資保護措施、監控所蒐集之資料、蒐集之目的,以及設定明確的資料保留期限,實施適當的技術和組織措施以確保資料安全等。 對於AI相關產業從事人員來說,更新AI相關規範知識非常重要,CNIL的人工智慧操作指引將可協助增強AI產業對於個資處理複雜法律問題的理解。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
父母對子女網路使用法律責任之相關德國判決-由『國小生轉貼 YouTube 連結被控侵害著作權』新聞談起