根據德國專利商標局(Deutsches Patent- und Markenamt)2017年度報告,德國該年境內發明專利申請量達67,707件,僅較2016年下降0.3%(2016年專利申請量達歷年新高),主要領域在交通;而新型專利和設計專利申請量卻持續下降。歷年申請量如下表:
|
(件數) |
2017 |
2016 |
2015 |
2014 |
2013 |
2012 |
2011 |
|
發明 |
67,706 |
67,907 |
66,898 |
65,963 |
63,177 |
61,361 |
59,612 |
|
新型 |
13,299 |
14,030 |
14,271 |
14,741 |
15,470 |
15,531 |
16,038 |
|
設計 |
44,297 |
57,057 |
58,017 |
60,837 |
56,944 |
55,250 |
53,197 |
資料來源:德國專利商標局
其中,德國汽車公司投資在電動汽車、輔助系統和自動駕駛等領域數十億元的成果在發明專利中被充分反映出來。根據德國專利商標局2017年度報告,該年自動駕駛專利申請數量有2,633件,較2016年增加14%,是2013年的兩倍。
在德國4,810件自動駕駛專利中,德國汽車公司就擁有超過2,006件,占42%,日本為28%,美國為11%。僅2017一年,德國汽車公司就取得325件自動駕駛專利,較日本公司259件、美國公司112件和法國公司的41件還多。其中絕大多數被Audi、Toyota和Volkswagen所擁有。
此外,德國境內電動汽車專利申請也增加10%,總數達到3,410件,超過三分之一是用於蓄電池和燃料電池,德國汽車公司高居專利申請量榜首,其中以Bosch和Schaeffler為最。
事實上,除了在德國境內,全球自動駕駛專利幾乎一半亦為德國汽車公司所擁有,截止至2017年底,占了48.8%,其中Bosch排名第一,共擁有1,101件專利。前十名專利擁有者如下圖:

單位:件
資料來源:德國經濟研究所(Institut der deutschen Wirtschaft)
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。
日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書」2017年6月28日日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書-以實現產業整合(Connected Industries)為目標-」。日本政府為能持續推動該國經濟,以建立創新附加價值的產業社會為目標,以實現產業整合並促進創新與競爭環境,於本年度一月至六月召開七次「第四次產業革命競爭政策研究會」,進行日本競爭政策檢討,並於28日發佈第一階段報告書。 本報告中提出四種大數據應用的商業模式,分別為:單獨成長型、附隨應用型、他面活用型與多面展開型四種。單獨成長型著重於產品或服務本身透過資料蒐集應用來改善品質。附隨應用型則除了透過資料搜集以進行產品與服務品質改善以外,亦擴散經驗運用到其他使用者的服務內容改善。他面活用型則透過產品或服務的資料蒐集,運用到其他的領域(例如駕駛資料的蒐集運用到保險費率的計算)。多面展開型則將多種不同的產品與服務的資料取得後綜整分析以能相互提升品質,或應用到新發展的領域。 報告中並提出資料運用對競爭環境影響的三個關鍵步驟。首先是資料本身的影響力,包括資料本身的必要性、資料品質、蒐集成本等。其次為資料蒐集的可能性,因其他競爭者也可能取得相同資料,故應確保資料的稀少性與蒐集能力的差異(與競爭者能區別)。第三是資料運用可能性,應注意資料應用上是否有資金、人才在競爭上的其他限制。
Refuah公司與紐約總檢察長達成和解並投資120萬美元保護病人資料紐約州總檢察長Letitia James於2024年1月5日與健康照護服務業者Refuah Health Center, Inc.(下稱Refuah公司)達成和解,主因為該公司遭受勒索軟體攻擊(ransomware attack),約25萬紐約州民個資遭到洩漏。和解協議要求Refuah公司支付共計45 萬美元之民事懲罰金及費用(penalties and costs),且應投資 120 萬美元加強網路安全(cybersecurity)。 Refuah公司主要業務為經營三家醫療機構和五輛行動醫療車(mobile medical vans)。2021 年 5 月,Refuah公司遭到勒索軟體攻擊,網路攻擊者得以近用數千名病人的資料,取得了包含姓名、地址、電話號碼、社會保險號碼、駕照號碼、出生日期、金融帳號、醫療保險號碼等資料。 依據檢察長辦公室的調查顯示,攻擊者之所以得近用這些資料,原因為 Refuah公司未採取適當安全維護措施,包括:未停用不活躍之使用者帳號(inactive user accounts);未定期更換使用者帳號憑證(user account credentials);未限制員工僅得近用其業務所必需之資源和資料;未使用多重要素驗證(multi-factor authentication)以及未加密病人資料。 依據協議內容,Refuah公司同意投資 120 萬美元,用於開發和維護更強大的資訊安全計畫(information security programs),以更妥適地保護病人資料。該協議還要求Refuah公司應: 1.維護全面的資訊安全計畫,以保護消費者資料的安全性、機密性和完整性; 2.實施並持續更新消費者資料近用限制相關政策和程序; 3.遠端近用資源和資料應使用多重要素驗證; 4.定期更新近用資源和資料的憑證; 5.至少每半年進行一次稽核,確保使用者僅近用其業務所必需之資源和資料; 6.對所有儲存或傳輸的消費者資料進行加密; 7.實施控制措施,監控和記錄公司網路和系統的所有安全和操作活動;以及 8.制定、實施和持續更新全面的事故應變計畫。 Refuah公司還須向州政府支付共計45 萬美元之民事懲罰金及費用,其中 10 萬美元將在該公司投入 120 萬美元開發和維護其資訊安全計畫後,得暫緩支付。
營業秘密管理概要