日本著作權法第2條第1項第1款規定對著作物定義中,創作性之表現必須為具有個人個性之表現,日本對於無人類行為參與之人工智慧創作物,多數意見認定此種產品無個性之表現,非現行著作權法所保護之產物。人工智慧之侵權行為在現行法的解釋上,難以將人工智慧解釋其本身具有「法人格」,有關人工智慧「締結契約」之效力為「人工智慧利用人」與「契約相對人」間發生契約之法律效果。日本政府及學者對人工智慧之探討,一般會以人工智慧學習用資料、建立資料庫人工智慧程式、人工智慧訓練/學習完成模型、人工智慧產品四個區塊加以探討。日本政策上放寬著作權之限制,使得著作物利用者可以更加靈活運用。為促進著作之流通,在未知著作權人之情況下,可利用仲裁系統。在現今資訊技術快速成長的時代,面對人工智慧的浪潮,日本亦陸續推出相關人工智慧研發等方針及規範,對於爾後之發展值得參酌借鏡。
德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
紐西蘭將設置食品安全科學研究中心並提供食安相關科研補助紐西蘭科學與創新大臣Steven Joyce與食品安全大臣Nikki Kaye,於今年(2014)4月16日宣佈該國將設置食品安全科學研究中心以因應食品安全危機。該中心預計於本年底前建成並投入使用,該國政府和產業界每年將聯合資助至少紐西蘭幣500萬元。該中心是為了促進、協調和提供食品安全科學與研究,並將提供食安相關科研補助,主要聚焦於涉及公共利益的食品安全科學和研究活動,涵蓋食品的整個價值鏈。 包括: 1.生物、化學、物理和放射性的食品安全風險; 2.與食品添加物質相關的風險; 3.食品安全的風險評估、管理及與公眾的良好溝通; 4.與國際科學界和現有的國際研究平臺展開合作。 紐西蘭食品安全科學研究中心起因自去年紐西蘭發生濃縮乳清蛋白受汙染事件,嚴重影響該國畜牧業外銷,為防範類似事件再發生,去年底政府研究報告指出29項改善目標,其中即包括設立該中心。 該中心成立後首先將徵求合作對象。紐西蘭商業、創新與就業部,初級產業部兩部會於2014年4月16日聯合發布合作意向徵求通知,有意承辦或者加盟中心的研究機構可以參加競標。商業、創新與就業部之科學委員會將負責遴選合作對象,得參加5月末食品安全科學研究中心合作研討會。同時,將徵求食安相關科研補助專案。兩部會在7月初,將向前述入選者發佈提案募集通知,特別鼓勵聯合提出專案申報書,後續將由獨立專家組成的委員會對其進行評估,最後由科學委員會做出補助決定。
阿爾卡特朗訊上訴要求微軟支付15億美元的損害賠償對於微軟的Windows Media player侵害MP3科技的兩項專利,阿爾卡特朗訊公司7月7日向美國巡迴上訴法院提起訴訟,要求回復對微軟的專利侵權懲罰。 聖地牙哥陪審團在去年2月裁定微軟應就侵害兩項專利權支付15億美元賠償金。微軟爭執這項裁定沒有任何法律或事實上的依據,對此,美國地方法院法官Brewster同意微軟的主張,認為兩項專利侵權的標的中,微軟並未侵害其中一項,而另一項專利,微軟擁有德國Fraunhofer公司的授權,因此法官判定陪審團的裁定並無充足的證據支持,微軟無須支付15億美元的損害賠償。 阿爾卡特朗訊公司宣稱MP3的專利在1989年由AT&T的研發部門貝爾實驗室與Fraunhofer公司共同研發,但朗訊科技在1996年脫離AT&T成為一家獨立的公司,並保留貝爾實驗室的多項專利資產。2006年阿爾卡特與朗訊合併為阿爾卡特朗訊公司,所以該項專利係屬阿爾卡特朗訊公司所有。 微軟發言人表示,Brewster法官的判決是正確的。其中一項專利是微軟向Fraunhofer支付一千六百萬美元授權金而獲得的授權。 阿爾卡特朗訊和微軟對於這場專利爭訟都十分堅持自己的立場,目前尚未有任何跡象顯示未來雙方有和解的可能,看來這場專利戰爭還會持續很久。
歐盟部長理事會通過第16輪對俄羅斯制裁規定,持續打擊規避管制行為歐盟部長理事會(The Council of the European Union)於2025年2月24日通過第16輪對俄羅斯的制裁規定,以因應俄羅斯持續滿三年非法侵略烏克蘭的行為。第16輪制裁針對俄羅斯經濟中具有系統重要性的部門,例如能源、貿易、運輸、基礎建設和金融服務加強管制,並且加強打擊規避制裁的行為。 第16輪制裁中有關出口管制的黑名單交易對象、物流與金流的措施概述如下: 1.實體名單更新與反規避 (1)制裁名單新增管制理由,包括制裁支持不安全油輪(unsafe oil tankers)營運者。 (2)將74艘貢獻俄羅斯能源收入的船隻,列入制裁名單。 (3)對53家支持俄羅斯軍工複合體(military-industrial complex)或從事規避制裁的新公司(其中包括俄羅斯以外國家的34家公司),實施針對性的出口限制。 (4)實體名單新增83個實體(包括48名自然人及35個法人實體),例如支持俄羅斯軍工複合體、積極從事規避制裁、俄羅斯加密資產交易所,以及海事領域的公司。 2.軍民兩用項目出口管制 (1)違反化學武器公約,用於生產氯化苦(chloropicrin)和其他用作化學武器的防暴劑(riot control agents)的兩用化學前驅物(precursor)。 (2)用於製造武器的電腦數控(Computer Numerical Control,即CNC)工具機相關軟體,以及俄羅斯軍隊在戰場上駕駛無人機時使用的視訊遊戲控制器。 (3)鉻礦石及化合物。 3.金融業措施 (1)將13家提供專門金融訊息服務的金融機構列入實體名單。 (2)對於使用俄羅斯中央銀行金融訊息系統(Financial Messaging System of the Central Bank of Russia)規避歐盟制裁者,在交易禁令(transaction ban)中增加3家銀行。