行動上網吃到飽對電信產業之影響

刊登期別
第30卷,第2期,2018年02月
 
隸屬計畫成果
交通部106年度網通資源與產業協助研究委託研究計畫
 

  隨著4G開台,各家電信業者為獲取用戶數,爭相推出無限上網吃到飽方案,然在數據流量呈現爆炸性成長下,電信業者之收益卻持續下探。為解決此問題,本研究嘗試提出建議方案,期望實現我國對數位經濟之願景。

※ 行動上網吃到飽對電信產業之影響, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8002&no=67&tp=1 (最後瀏覽日:2025/10/29)
引註此篇文章
你可能還會想看
受傷的機車騎士就機器自動駕駛的車輛控訴過失駕駛

  美國通用汽車公司(General Motors,下稱通用汽車)於2018年01月間向美國運輸部(United States Department of Transportation)遞出請求展示雪弗蘭(Chevrolet)第4代自動駕駛車(此款車種無裝備方向盤與踏板,號稱世界上第一輛可以自我安全駕駛,且無需人類介入駕駛的車輛)的申請,不久後關於以下車禍事件的訴訟即遭提起。   根據Oscar Willhelm Nilsson(即原告,下稱Nilsson)於2018年01月22日向美國舊金山區地方法院針對前開車禍事件提起訴訟的主張,於2017年12月07日早上,其在加州舊金山Oak Street的中央車道上騎乘機車往東行駛,Manuel DeJesus Salazar(即被告,下稱Salazar)於同時地駕駛由通用汽車製造之Chevrolet Bolt vehicle(下稱自駕車),並開啟自動駕駛模式且雙手放開方向盤。Nilsson原騎乘於自駕車後方,不久,自駕車自Nilsson正前方變換車道至左側,Nilsson則繼續筆直前行,但自駕車又隨即往回駛入Nilsson直行騎乘的車道,因此撞擊Nilsson摔倒在地。據此,Nilsson主張通用汽車公司欠缺對於自駕車的自我操作應符合交通法規及規定所賦之注意義務,換言之,自駕車前揭操作車輛駕駛的行為(未注意其他正在行駛的駕駛人而轉換至比鄰車道)具有過失,造成Nilsson受到嚴重的生理及心理損害,且無法工作,產生高額的醫療、護理費用,故請求法院判決原告即Nilsson之主張不少於7萬5千美元之損害賠償、懲罰性損害賠償、律師委任費用以及其他適當且公正之侵權損害賠償等有理由。   然而,根據先前加州車輛管理局所提之文件,通用汽車對Nilsson所描述之車禍經過提出了以下爭執,通用汽車表示自駕車側面有一條長磨損痕跡,應是當時右邊的車道正要匯入中央車道,而自駕車正在自我校正回車道中央,Nilsson卻騎乘機車從兩個車道中間切出來,導致與自駕車發生擦撞。此外,案發當時自駕車的時速為了順應車流而保持在每小時12英里(每小時19公里)行進,而摩托車卻是以大概每小時17英里(每小時27公里)行進,故自駕車應無不當駕駛之情形,反應由機車騎士Nilsson負擔肇事責任,因其未在確認安全之情況下,即從自駕車右側超車,以上通用汽車反駁Nilsson主張的結論,更與舊金山警察局的報告結果不謀而合,即舊金山警察局認為Nilsson在確定安全以前,就嘗試要超越自駕車。   此外,在前開訴訟提起前的2018年01月14日至01月20日的當週,加州車輛管理局表列出自2014年至2018年間的54起自動駕駛車意外報告,大部分的狀況係由駕駛人(而非自動駕駛車本身)對事故負責(雖開啟自動駕駛模式,但駕駛人仍在特定條件下需要自行駕駛)。   即便前開各個報告看似不利Nilsson,但Nilsson的律師Sergei Lemberg卻表示警方的報告應是有利Nilsson,因自駕車早在車禍發生前就已經發覺Nilsson,但卻沒有預留足夠的時間剎車與閃避,因此通用汽車公司所稱之主張並不足採信,更可見自駕車的行為是危險且難以被預測的。   就此,一位南加大研究自駕車法律問題的法律系教授Bryant Walker Smith表示,未來發生事故的時候,駕駛人在大多數的狀況下比較不會被苛責,但自動駕駛系統會被檢討應該可以做得更完善。 (註:本件訴訟仍在繫屬中,尚未判決。)

美國公布「2050淨零排放之路:美國長期策略」

  美國於2021年11月1日公布「2050淨零排放之路:美國長期策略」(The Long-Term Strategy of the United States: Pathways to Net-Zero Greenhouse Gas Emissions by 2050),確立美國未來十年溫室氣體減量發展方向,希望透過聯邦政府與各州、地方政府間合作,並結合社會整體力量,使美國可以在2050年實現淨零排放,並支持更加永續、具彈性且平等的經濟發展,實現完全的零碳污染、強化經濟及提升大眾健康。   本報告首先強調從現在開始至2030年約十年間溫室氣體排放減量的重要性,並說明美國接下來將以溫室氣體排放減量,作為未來達成淨零排放目標之基礎。為了達成淨零排放,美國計畫自能源、產業的排放結構著手推動轉型,報告中公布五項具體目標: 電力脫碳化:近年來因為風力及太陽能等潔淨能源發電成本急遽降低,能源轉型的腳步也逐漸加快,在此基礎上,美國訂定2035年達到100%潔淨電能的目標,並預計電力部門可於2050年以前達到真正的淨零排放。 電動化或轉換為潔淨能源:推動各部門電動化,使交通、建築物及工業製程可以使用合理成本且具一定效率的電力作為主要能源;針對航空、海運及部分工業製程等以現行科技水準較難實現電動化的經濟活動,則推動轉換為氫能、永續生質能等較潔淨的燃料。 減少能源浪費:透過新技術的開發,提升能源使用效率,例如於新建建築物使用能源效率較優的設備、更新既有建物之設備、改善工業製程的能源效率等。 降低甲烷等非二氧化碳溫室氣體排放:採取適當措施以減少甲烷、氫氟碳化合物、氮氧化物等非二氧化碳溫室氣體之排放,包括於石油及天然氣系統加裝甲烷洩漏感測器,以監控其洩漏狀態,以及將冷卻設備中的制冷劑從氫氟碳化合物更換為環境友善的其他物質。 移除大氣中二氧化碳:增加自然碳匯,或以目前可實際運用的技術吸收大氣中的二氧化碳。   美國預計結合聯邦、地方政府,以及產業、學術機構、投資人等社會各界,透過政策執行,強化推動能源、運輸、土地利用等經濟活動的溫室氣體減量工作;同時,配合資金導入,支持並給予各部門足夠的誘因投入潔淨技術的開發,並透過合作,以減少技術開發時可能遭遇的障礙及付出的成本,帶動美國整體朝淨零目標邁進。

2006年世界智慧財產權組織大會會議關於「商標法條約」的議題

  世界智慧財產權組織( WIPO )大會第三十三屆會議於 2006 年 9 月 25 日 (星期一)在瑞士日內瓦正式開幕,有來自全球 183 個會員國共襄盛舉,此次會議將於 9 月 25 日 至 10 月 3 日 間舉行。本次世界智慧財產權組織大會將審查該組織的工作進展,還有討論未來的政策方向,包括今年 3 月間在新加坡外交會議中所協商通過的「商標法條約( the Singapore Treaty on the Law of Trademarks ,故本條約又被簡稱為新加坡條約 Singapore Treaty )」、網域名稱、保護廣播組織與視聽表演之規定等議題。   其中今年協商通過的新加坡條約規範中,納入雷射圖樣( 3D )商標、動作商標、顏色、氣味及聲音等不同類型的商標,突破傳統商標只強調視覺觀感的象徵,增加許多非視覺的商標類型,以求符合商業的新興趨勢,勢必將使未來商標的應用更加多樣化。此外在新加坡條約中也增加相關救濟規定,如:商標申請人若非故意而導致逾期未完成註冊,締約國應提供權利回復的方式( Rule9 )等,對於申請人的保護更加周到。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP