日本總務省公告第一次Startup×Act計畫成果

  2017年底,日本總務省(総務省)宣布實施Startup×Act計畫,委由知名智庫野村綜合研究所(株式会社野村総合研究所)辦理執行,希望透過與新創團隊共同協作的模式,運用資通信科技(Information Communication Technology, ICT)緩解日本高齡化、少子化、都市防災、城鄉差距等問題。該計畫第一期已於2018年2月執行完畢,並於2018年3月8日在東京舉行了計畫成果發表會。根據日本總務省新聞稿表示,Startup×Act計畫是參考美國的新創駐進計畫(Startup in Residence, STiR;或譯創業家居留計畫)進行設計。

  STiR係舊金山公民創新市長辦公室(San Francisco Major’s Office of Civic Innovation)於2014年成立的計畫,該計畫強調以公私共同協作的方式解決政府所面臨的民生問題。STiR運作方式雖在個別城市略有差異,但大致係由地方政府選定特定數個待解決的都市問題,再以工作坊的形式與有興趣之新創團隊進行討論。整個計畫以16周為期,以公私共同開發出產品或服務原型為目標,最後由新創團隊進行提案報告,為都市問題提供解決方法。提案可能被市政府採納並在市政府的協助之下以該都市做為實證場域,未來更可能與市政府簽訂合作契約,進一步使該新創團隊成為一成熟型新創公司。據統計,平均每年參與STiR的新創團隊有半數獲得了與當地市政府的合約。目前STiR已經推行至全美包含華盛頓DC在內的11個城市,並在荷蘭阿姆斯特丹與海牙皆設有姊妹站,由此可見STiR模式獲得相當大的迴響與肯定,並具有跨域、跨文化之普適性。

  日本參考STiR所推出的Startup×Act計畫於2017年底啟動,第一個參與的地方政府為京都府京丹後市,之後陸續有北海道天塩町、香川縣高松市、熊本縣熊本市加入計畫。Startup×Act的Act為Applications for Cities and Town之縮寫,彰顯城市作為新創產品或服務實證場域的計畫特色。

  Startup×Act擇定健康醫療與社福照顧、育兒與教育、安全安心生活、城鄉發展與交通以及產業振興提升就業為五大都市問題。在Startup×Act計畫之下,地方政府毋須提供政府採購的需求說明書(Request for Proposal, RFP),僅需提出希望解決之問題。舉例而言,香川市就提出「希望能讓被取消駕照資格的高齡者繼續享受出門購物的樂趣」,最後該案由一間VR新創公司提出解決方案。

  STiR與Startup×Act這種類工作坊的高密度、高強度的腦力激盪與供需兩端直接溝通是其特色。時程短、彈性高,資源共享與知識流通量巨大,並且以解決問題為導向,能破除新創企業參與政府採購的障礙。新創團隊除了可以在短時間內累積大量地方社群與政府人脈,增加彼此信任度,更可以從具體的實證經驗當中學習並進一步拓展市場。

相關連結
相關附件
你可能會想參加
※ 日本總務省公告第一次Startup×Act計畫成果, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8010&no=67&tp=1 (最後瀏覽日:2026/02/12)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

多普達的電視手機被控鏈結侵權,一審被判訴

  多普達在2004年即將結束時接到了北京市海澱區人民法院的判決,原告北京央視公?資訊有限公司在一審中勝訴,不過,多普達總裁楊興平在今天的一個公開場合表示已經在準備上訴,“多普達有信心打贏這場官司。”楊興平說。   台灣手機廠商多普達於2004年3月在大陸推出型號為535之智慧型手機,此款手機具有強大的視頻功能,可藉由超連結收看網路電視。而多普達也在該款手機上內建了大陸中央電視台的頻道鏈結,讓使用者可以收看CCTV-新聞、CCTV-4、CCTV-9三個頻道的節目。不過,與中央電視臺簽有授權於電信網路傳播合同的央視公?,於2004年8月13日控告多普達侵權,要求多普達財償人民幣50萬元。   此案於2004年12月30日經海澱區人民法院判決多普達公司侵害央視公?公司在電信領域所取得的中央電視臺節目傳播權,應停止使用CCTV-新聞、CCTV-4、CCTV-9節目、在相關媒體上道歉,並賠償央視公?公司經濟損失共計37.1萬元。而且,法院還要求多普達的經銷商停止銷售該款手機。多普達則決定向北京市中級人民法院提出上訴。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

綠色經濟草案(Green New Deal Resolution)簡介

一、立法背景   由於美國國家海洋暨大氣總署(National Oceanic and Atmospheric Administration,縮寫NOAA)於2018年間發布關於氣候變遷將導致經濟發展受到影響之相關報告,同時間,美國最高法院拒絕駁回2015年由21位民眾及美國Our Children’s Trust(非政府組織)對聯邦政府所提起之訴訟,主張美國政府並未循正當法律程序,即鼓勵對環境保護傷害甚鉅之石化能源開發。因此聯合國人權暨環境特別報告(UN Special Rapporteur on human rights and the environment)呼籲各國盡快針對環境變遷採取相關行動,美國國會議員Ed Markey及Alexandria Ocasio-Cortez遂基於上述情事於2019年2月7偕同提出綠色經濟草案(下稱本草案)。 二、草案簡介   所謂綠色經濟,是因應全球經濟危機、氣候變遷、石油資源枯竭而提出,其內容包括金融及租稅政策的重建以及再生能源的運用,初始概念於2007年由一位記者刊載於時代雜誌與紐約時報,後相關倡議人士遂依此成立非政府組織The Green New Deal Group,並於2008年廣泛發行相關刊物。 三、草案內容   本草案賦予政府五大義務:溫室氣體零排放、創造百萬高薪工作機會、投資基礎設施及工業、永續環境(諸如確保空氣、水質、氣候、食品之安全、韌性社區之推動)、反壓迫等,且內容上更將前開義務再行細分為14項目標計畫,並訂定10年執行期間。   上揭14項目標計畫的內容大致可分為五類,分別為:提升基礎設施以因應各種氣候變遷所造成之災害、將政府所需能源全數轉換為零碳排放、提升電力及能源效率、消除製造業與農業所造成之汙染與溫室氣體的排放,另外亦全面將大眾運輸設施改建為高速及零碳排放系統。   為達成前述14項目標,本草案一共訂定15項須政府配合之細項,方向上包括:給予社區、組織、機關、地方政府及各法人相關協助、提供適切之訓練課程及高等教育、針對新興科技之研究與開發進行投資、提高家庭所得及保障各級勞工組織工會之權利、提供全民高品質之健康照護。

TOP