V2V(Vehicle-to-vehicle)通訊使用短程無線通訊技術(dedicated short-range radio communication, DSRC)交換周邊車輛速度與位置等相關訊息,並協助採取相對應措施,如警告駕駛前方車輛正在剎車,或於駕駛視線死角處有其他車輛正高速接近。因此,使用V2V通訊技術可有效避免車輛間相互碰撞、紓解交通壅塞之問題,對環保方面亦有所助益,然而,此技術於多數車輛間得以相互通訊時,方能最大化其效益。
V2V通訊技術可以每秒約10次之頻率,使車輛間相互廣播並接收全面之訊息,從而在一定距離範圍內360度「感知」其他車輛並與其他車輛進行「對話」。若將搭載V2V通訊技術之車輛配備適當的軟體或安全設備,車輛間即可利用接收到的有效訊息來避免潛在的事故威脅。V2V通訊技術可偵測出超過300公尺範圍之交通情況,包括因交通、地形或天氣影響而受人類駕駛忽略之危險,較傳統使用雷達系統或攝影鏡頭進行偵測之方式更為精準。
無論是機車、汽車、卡車及公車皆可使用V2V通訊技術以提升車輛安全系統的性能,車輛間之連接技術將成為協助駕駛發現潛在交通危機的輔助工具,有助於顯著減少每年因交通事故喪生之人數。
本文為「經濟部產業技術司科技專案成果」
2022年7月25日,日本政府召開今年5月公布的《經濟安全保障推進法》專家小組第1次會議,會議提出「確保特定重要物資穩定供給之基本指導方針」(特定重要物資の安定的な供給の確保に関する基本指針),指出在日益複雜的國際情勢及社會經濟結構變化中,自由經濟原則所承擔的風險逐漸增加,在經濟安全問題上,政府應有更多參與和監管,不可過度依賴市場競爭,並明確規定政府應適當指定符合下列4要件之物資為「特定重要物資」: 一、人民生存和經濟活動所必需 指被多數人廣泛使用、融入於各行各業中,在經濟合理的角度觀察,沒有替代品的物資。 二、避免過度依賴外部資源 指資源掌握於特定少數國家或地區,如供應中斷將造成日本境內重大影響者。或基於社會經濟結構變化和技術創新趨勢,是否有如不採取因應措施,可能有過度依存風險之外部資源。 三、因外部行為造成中斷供給的可能性 因外部行為(如供應國暫停出口)導致供應中斷,對人民生活與經濟活動發生重大影響者,包含發生之可能性。 四、除前述3要件外,認有特別必要性時 例如,近年有供應中斷紀錄,或出現供應中斷風險提升的傾向,須立即採取措施時等情形。 此外,日本政府規劃將減少「特定重要物資」對國外的進口依賴,並授權政府可對企業的原物料供應商及庫存進行調查,拒絕者將課以罰責,以確保「特定重要物資」的穩定供應。
美國國家健康研究院提出幹細胞研究指導方針草案美國新任總統歐巴馬上台後,終結小布希政府多年來的人類幹細胞研究補助禁令,於今(2009)年3月9日發佈了13505號執行命令(Executive Order)。此執行命令不僅擴大了可接受政府補助之人類幹細胞研究範圍,亦要求美國國家健康研究院(National Institutes of Health, NIH)檢視現存相關指導方針,並於120天內發佈新的規範。因此,NIH隨後於4月23日提出了幹細胞研究指導方針草案。 草案除將持續補助使用成體幹細胞及誘導多能幹細胞之研究外,針對過往無法接受補助之幹細胞類型(即原本為生殖目的之體外受精卵所衍生之幹細胞)也解除了禁令,使得美國科學家可取得更多樣及不受汙染的人類幹細胞。另外,草案也就幹細胞取得之告知後同意條約與流程做詳細的說明。最後,源自於體細胞核移轉(somatic cell nuclear transfer)、單性生殖(parthenogenesis)或為研究目的於體外所製造之胚胎等範疇之幹細胞,將無法接受草案的補助。 雖然草案大幅開放可受補助之範圍,但仍有些使用合乎規定之幹細胞之研究無法接受到補助,故對利害關係人來說,還是要注意草案所規定之限制條件。目前草案仍處於公眾評論之階段,預計不久之後將可正式生效。
舊金山監事會通過決議禁止政府使用臉部辨識美國舊金山監事會(San Francisco Board of Supervisors,編按:監事會是舊金山市的立法部門,性質類似議會)於2019年05月通過停止秘密監察條例(Stop Secret Surveillance Ordinance),並將其訂入行政法規(San Francisco Administrative Code)條文,包括增訂第19B章及修訂第2A.20節、第3.27節、第10.170-1節和第21.07節。根據行政法規第19B章,舊金山政府及執法機構未來將不能使用臉部辨識科技,也不能處理或利用任何自臉部辨識科技取得的資訊。 易言之,在公共場所安裝具備臉部辨識科技的監視器,或暗自使用臉部辨識科技尋找嫌疑犯都構成違法行為。然而,法規的修訂不代表舊金山內所有臉部辨識系統將全面停止。由於舊金山機場及港口屬美國聯邦政府管轄,不受地方政府法律所規範,仍可使用臉部辨識科技;而民眾及私人企業並非修訂條文的規範對象,亦可繼續採用。 此次法規的修訂引發高度關注,各界也熱烈討論。反對者表示,法規的修訂使執法機關打擊犯罪的努力付之一炬,危害民眾安全;贊成者則認為,臉部辨識科技過分侵害人民的隱私權和自由權,應對其有所限制。畢竟,臉部辨識科技並非萬無一失,尤其當受辨識者為女性或深膚色人種時,準確率往往下降許多,而有歧視的疑慮。舊金山首開先例立法,成為全美第一個限制政府使用臉部辨識科技的城市,其他城市或國家未來是否會仿效而相繼立法,值得繼續關注。
美國加州「Asilomar人工智慧原則決議」美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下: (1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。 (2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。 (3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。 (4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。 (5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。 (6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。 (7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。 (8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。 (9)人工智慧所產生之責任,應由設計者以及建造者負擔。 (10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。 (11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。 (12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。 (13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。 (14)人工智慧之技術應盡力滿足越多人之利益。 (15)人工智慧之經濟利益,應為整體人類所合理共享。 (16)人類對於人工智慧之內在目標應享有最終設定權限。 (17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。 (18)人工智慧所產生之自動化武器之軍備競賽應被禁止。 (19)政策上對於人工智慧外來之發展程度,不應預設立場。 (20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。 (21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。 (22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。 (23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。