英國海外屬地直布羅陀,針對透過與日俱增的首次發行代幣(Initial Coin Offerings, 簡稱ICO)募集商業活動,早在2017年9月,其金融服務委員會(Gibraltar Financial Service Commission, 簡稱GFSC)已公布官方聲明,警告投資人運用分散式帳本技術(Distributed Ledger Technology,簡稱DLT)之商業活動,如:虛擬貨幣交易或ICO等具高風險且投機之性質,投資人應謹慎。
GFSC又於2018年1月公布「分散式帳本技術管制架構」(Distributed Ledger Technology Regulatory Framework),凡直布羅陀境內成立或從其境內發展之商業活動,若涉及利用DLT儲存(store)或傳輸(transmit)他人有價財產(value belong)者,均須先向GFSC申請成為DLT提供者(DLT provider),並負擔以下義務:
GFSC和商業部(Ministry of Commerce)又於2018年2月聯合公布,將於第二季提出全世界第一部ICO規範,管制境內行銷(promotion)、販售和散布數位代幣(digital token)行為,強調贊助人須先授權(authorized sponsor),並有義務確保遵守有關資訊揭露和避免金融犯罪之法律。
瑞士國會在2003年通過法律,允許有條件種植基改作物,但是反對者要求禁種的聲浪仍高,為此,瑞士甚至特別舉行了公民投票。公投結果在11月底出爐,正式確定未來五年瑞士境內將禁止種植基因改造植物或培育基因改造動物。根據官方資料顯示,有55.7%的投票者支持這項公投案,支持者多為農民、環保人士、生態學家和消費者協會。 反基因改造生物(GMO)者表示,基改農作物對消費者與農民並無益處,禁令將可使得瑞士有更多時間來評估GMO對於生態環境安全的衝擊,並且可使農民有更多的機會銷售傳統農產品和有機農產品。 雖然此一決定僅禁止GMO之種植或養殖,並沒有禁止基因改造科技的研究以及基改產品的進口,但瑞士生技業及科學研究人員仍極憂心地表示,實驗室的基改研究成果若無法量產上市,仍將會嚴重打擊其國內基因科技研究,造成人才及產業外移。
何謂「LAB- FAB - APP- Investing in the European future we want」?歐盟執委會研究創新總署之高級專家小組(High Level Group)2017年7月3日提交名為《研究、生產、應用—投資於我們所期待的歐洲未來》(LAB- FAB - APP- Investing in the European future we want)報告,呼籲歐盟及成員國大幅增加對研發創新的投入。該報告認為過去20年,工業化國家2/3的經濟增長歸功於研發創新。歐洲必須妥善利用大量知識,將創新潛力轉化為現實的經濟增長,從而促進歐洲繁榮,解決社會挑戰。該報告提出11項建議:(1)將歐盟及成員國的預算優先考慮投入研發創新,將下一個歐盟研發創新計畫的預算提高一倍;(2)建立可創造未來市場的歐盟創新政策;(3)投入未來教育培訓,投資創新人才;(4)編制能夠發揮更大影響力的歐盟研發創新計畫,堅持目標、完善評估系統以增加計畫靈活度;(5)採取任務導向、焦點式措施應對全球挑戰;(6)使歐盟資金分配更加合理,實現與歐盟結構性基金的協同效應;(7)進一步簡化計畫管理模式,更注重效果而不是過程;(8)激勵公眾參與創新;(9)更好地促進歐盟及成員國的研發創新投資合作;(10)使國際合作成為歐盟研發創新的特徵,通過共同資助等方式,開放歐盟研發創新計畫;(11)將歐盟研發創新品牌化,擴大研究創新成果及作用。
日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書」2017年6月28日日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書-以實現產業整合(Connected Industries)為目標-」。日本政府為能持續推動該國經濟,以建立創新附加價值的產業社會為目標,以實現產業整合並促進創新與競爭環境,於本年度一月至六月召開七次「第四次產業革命競爭政策研究會」,進行日本競爭政策檢討,並於28日發佈第一階段報告書。 本報告中提出四種大數據應用的商業模式,分別為:單獨成長型、附隨應用型、他面活用型與多面展開型四種。單獨成長型著重於產品或服務本身透過資料蒐集應用來改善品質。附隨應用型則除了透過資料搜集以進行產品與服務品質改善以外,亦擴散經驗運用到其他使用者的服務內容改善。他面活用型則透過產品或服務的資料蒐集,運用到其他的領域(例如駕駛資料的蒐集運用到保險費率的計算)。多面展開型則將多種不同的產品與服務的資料取得後綜整分析以能相互提升品質,或應用到新發展的領域。 報告中並提出資料運用對競爭環境影響的三個關鍵步驟。首先是資料本身的影響力,包括資料本身的必要性、資料品質、蒐集成本等。其次為資料蒐集的可能性,因其他競爭者也可能取得相同資料,故應確保資料的稀少性與蒐集能力的差異(與競爭者能區別)。第三是資料運用可能性,應注意資料應用上是否有資金、人才在競爭上的其他限制。
美國情報體系發布「情報體系運用人工智慧倫理架構」美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項: 一、於經過潛在風險評估後,以適當且符合目的之方法利用; 二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求; 三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。 四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。 五、AI進行測試時應同時考量其未來利用上可預見之風險。 六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。 七、AI之建立目的、限制與設計之輸出項目,應文件化。 八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。 九、持續不定期檢測AI,以確保其符合當初建置之目的。 十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。