日本創設搭載遠距型系統自駕車基準緩和認定制度

  日本國土交通省於2017年2月修正《道路運輸車輛安全基準》第55條第1項、第56條第1項及第57條第1項規定之告示,放寬車輛安全基準規定,期望自動駕駛實驗能順利展開。惟在各種自動駕駛實驗中,遠距型自動駕駛系統是透過電信通訊技術,從遠距離外操作車輛行駛,儘管修法後已放寬安全基準規定,但其仍與現行以車內有駕駛為前提而訂定之《道路運輸車輛安全基準》相距甚遠,想一律判斷其符合安全基準有所困難。據此,為使遠距型自駕系統道路實驗能夠順利進行,國土交通省於2018年3月30日創設「搭載遠距型系統自駕車基準緩和認定制度」,明確規定遠距型自駕系統實施道路實驗所需各項手續。

  「搭載遠距型系統自駕車基準緩和認定制度」規定項目包括︰申請放寬基準之對象、申請者、申請書及繳交文件、審查項目、條件及限制、基準放寬之認定、車體標示、行政處分等。

本文為「經濟部產業技術司科技專案成果」

※ 日本創設搭載遠距型系統自駕車基準緩和認定制度, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8048&no=645&tp=5 (最後瀏覽日:2026/02/17)
引註此篇文章
你可能還會想看
新加坡網路安全局發布人工智慧系統安全指南,以降低AI系統潛在風險

新加坡網路安全局(Cyber Security Agency of Singapore, CSA)於2024年10月15日發布人工智慧系統安全指南(Guidelines on Securing AI Systems),旨在強化AI系統安全,協助組織以安全之方式運用AI,降低潛在風險。 該指南將AI系統生命週期分成五個關鍵階段,分別針對各階段的安全風險,提出相關防範措施: (1)規劃與設計:提高AI安全風險認知能力,進行安全風險評估。 (2)開發:提升訓練資料、模型、應用程式介面與軟體庫之供應安全,確保供應商遵守安全政策與國際標準或進行風險管理;並辨識、追蹤及保護AI相關資產(例如模型、資料、輸入指令),以確保AI開發環境安全。 (3)部署:適用標準安全措施(例如存取控制、日誌記錄),並建立事件管理程序。 (4)運作與維護:持續監控AI系統的輸入和輸出,偵測異常與潛在攻擊,並建立漏洞揭露流程。 (5)壽命終期:應根據相關行業標準或法規,對資料與模型進行適當之處理、銷毀,防止未經授權之存取。 CSA期待該指南發布後,將有助於預防供應鏈攻擊(supply chain attacks)、對抗式機器學習攻擊(Adversarial Machine Learning attacks)等安全風險,確保AI系統的整體安全與穩定運行。

亞太經濟合作組織(APEC)糧食安全政策夥伴關係機制(PPFS)2014年8月14日在北京召開成員會議

  亞太經濟合作組織(Asia-Pacific Economic Cooperation, APEC)糧食安全政策夥伴關係機制(Policy Partnership on Food Security, PPFS)成員國、APEC秘書處、APEC工商諮詢理事會秘書處、糧農組織代表在北京召開全體成員會議,就亞太糧食安全相關議題與糧食安全政策夥伴關係機制(PPFS)建構進行討論。PPFS為政府部門與民間組織、企業溝通對話之平台,係APEC解決亞太糧食安全所建構之機制,茲就本次會議作成之重點分述如下: 1.亞太經濟合作組織(APEC)糧食安全政策夥伴關係機制(PPFS)全於會中作成3項倡議:第一,加強APEC成員糧農政策對話與交流,協商區域合作的規劃和措施。第二,降低貿易和投資成本,消除貿易壁壘促進糧農貿易。第三,加強各政府、產業與個體農民交流,促進私部門參與糧食安全之商業模式,以利亞太糧食安全之永續。相關糧食安全議題及合作方向包括:糧食生產與技術移轉跨國合作;糧食儲備、供應鏈及降低糧損技術之交流與合作和貿易合作、投資與基礎建設等。 2.本次會議除作成前述宣示性倡議外, 另通過「APEC減少糧食損失和浪費行動計畫」、「APEC糧食安全商業計畫」、「APEC增強糧食標準與質量安全互通行動計畫」、「2020糧食安全路線圖」等修訂文件。其中,「2020糧食安全路線圖」,提及PPFS將致力於降低亞太區域之糧食農損失,並宣示於2020年降低農損總量10%之具體目標(以2011-2012年度之農損總量為比較基準)。

資通安全法律案例宣導彙編 第2輯

IBM提出「人工智慧日常倫理」手冊作為研發人員指引

  隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability)   由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment)   人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability)   人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。   該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。

TOP