荷蘭電信商T-Mobile NL根據歐盟併購條例收購Tele2 NL一案使執委會擔心其合併可能導致價格上漲,並損害荷蘭消費者的權益。
本交易案主角為德意志電信(Deutsche Telekom, DT)的子公司T-Mobile NL,以及Tele2的子公司Tele2 NL,兩者分別是荷蘭手機電信市場的第3大和第4大業者。T-Mobile NL在去年12月宣布將以2.21億美元的現金收購Tele2 NL,並持有合併後公司25%的股權。本併購案將使荷蘭的手機電信商數量從4個減少到3個。但合併後的新公司仍無法超過前兩大電信公司KPN和Vodafone。
DT表示,合併後的公司將在T-Mobile品牌下運營,新公司由於規模增長,將能夠打破目前KPN與Vodafone的雙佔市場。結合原來2間公司的資源,可以帶給電信市場更有效的競爭,並有利於5G佈局。
執委會的初步調查確定了以下主要爭點: 目前T-Mobile NL和Tele2 NL 在荷蘭手機電信市場相互競爭。執委會擔心本併購案會減少市場參與者的數量,使剩下的業者更不願進行有效競爭。可能導致價格上漲和投資減少。
執委會還打算進一步調查另外2個問題:
執委會擔心,未來虛擬電信商如想利用基礎設施,可能遭受更多阻礙。
美國審計部(Government Accountability Office, GAO)就無線電視數位化轉換一事進行調查並於2008年6月10日公布報告。該調查報告發現,雖然超過8成民眾對無線電視數位化有所認知,但亦有許多民眾認知有誤。 此外,該調查報告亦指出,收看無線電視之民眾中,45%尚未購買機上盒以因應無線電視數位化;反之並不需要為數位化進行準備之民眾(如收看有線電視或衛星電視者),卻有30%表示已經做好無線電視數位化之因應措施。在此同時,仍有部分低功率電視台將不會全面數位化,故接收無線電視之民眾可能必須備有同時可接收類比與數位訊號之設備,方能夠維持其無線電視的收視。 為鼓勵民眾購買數位機上盒,美國國家電信與資訊管理局(National Telecommunications and Information Administration, NTIA)稍早已經發出80萬張折價券,但僅有不到一半的折價券被使用,至於尚未被使用的折價券亦已逾期而無法使用。 除機上盒的準備外,隨著訊號數位化,無線電視台的訊號強度及受干擾程度也將有所改變,故無線電視台需調整電台或天線的位置,以避免部分地區民眾在數位化後無法收看清晰的影像。美國通訊傳播委員會之工程師指出,約有1%的民眾可能會有前述困擾,但截至目前為止,仍有部分電視台受限於經費問題而尚未有所因應。
何謂芬蘭「SHOKs」?2006年芬蘭研究創新委員會在其創新政策倡議中指出,為結合產學研就重大發展領域進行長期合作,加速該國公私合作投入創新過程 Public-Private Partnerships (PPP),故以非營利性有限公司型態成立科學技術創新策略中心(Strategic Centres for Science, Technology and Innovation, SHOKs)。 SHOKs的計畫經費主要由芬蘭技術處(Tekes)提供補助,惟政府補助比例上限:最高上限75%,必要時Tekes可減少補助以符合上述比例。2008年到2014年用於補助研究計畫金額總和為5.45億歐元。 SHOKs科研計畫成果智財權歸屬及運用規定概述如下: 一、既有智慧財產權歸屬及運用: 1.參與者共同執行研究計畫不影響其既有智慧財產權之歸屬。 2.參與者之既有智慧財產權,若屬其他共同參與者執行計畫有必要者,應依無償或FRAND原則對其他共同執行研究計畫之參與者進行授權。 3.與執行計畫目的無關之既有智慧財產權使用,應另行協商授權事宜。 二、計畫成果智慧財產權歸屬: 1.歸屬於產出成果之一方,但如成果是多方參與者共同產出,原則上共有,但可另約定僅歸屬一方。 2.非SHOKs股東對研發成果產出有重大貢獻者,該研發成果亦可歸屬於該非SHOKs股東。 三、計畫成果智慧財產權之運用: 1.參與者為研究機構者,應向欲運用其研發成果之企業參與者進行移轉或授權時,收取相當於市場價格的補償金。 2.研究計畫參與者得無償取得相同及全球範圍之成果使用權,但除研究機構外不得再授權。
加拿大可能推動更嚴格的身份盜用法律加拿大的身份盜用問題嚴重,根據Canadian Council of Better Business Bureaus估計,每年因身份盜用所造成的經濟整體損失超過二十億加幣。此外,去年十一月Ipsos-Reid的調查顯示,73%的加拿大人擔心身份盜用問題,且28%的加拿大人曾親身遭遇、或是有周遭認識之人因此受害。 然而,與身份盜用猖獗的現況相較,加拿大個人資料和隱私保護法制一直飽受批評,被認為無法遏止此一問題擴散。加拿大資料安全之基礎規範為「個人資訊保護與電子文件法」(Personal Information Protection and Electronic Documents Act),但以具有重要嚇阻效果的刑法而言,卻只處罰濫用他人身份資訊,如身份詐欺、冒用、偽造等行為,但對於初步蒐集、處理和盜賣身份資訊之行為,卻難以透過現行刑法規範。 身份盜用可能造成的影響層面相當廣泛,例如個人的財務和信用損失、商業或財金產業的損失,甚至是整體納稅人的傷害。 職是之故,加拿大勞工部、魁北克經濟發展部等政府首長乃宣布,聯邦政府有意推動刑法之修改,使檢警對於先期身份盜用(或違法資料蒐集)之行為,有更大的調查和追訴空間,並希望此一政策方向能獲得國會的後續支持。
歐盟議會發布《可信賴人工智慧倫理準則》2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。 問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。