美國合夥團體近期發展報告—由近10年有限合夥等團體資產與數量走勢談起
科技法律研究所
法律研究員 劉得正
101年4月26日
壹、前言
根據美國最新 (2011) 公布「國內稅收收入統計報告書」 (Internal Revenue Service Statistics of Income Bulletin Fall 2011 Washington, D.C. )[1]顯示,2000年至2009年間,美國有限合夥(Limited Partnership,LP)等合夥團體在數量與資產分佈上,有重大改變,簡要分析說明如下。
貳、美國有限合夥發展現況
一、各類合夥團體[2]總體數量呈現穩定成長
查美國國稅局最新 (2011) 發表之統計資料發現,至目前為止合夥團體仍就受到投資者的青睞。至2009年為止,以合夥身分報稅之企業,共計[3]3,168,728家,合夥人總數達21,141,979人,其申報擁有之總資產 (assets) 則達到約18.8兆美元。相對於2008年[4],合夥團體數量成長約2萬餘家,成長幅度0.7%;合夥人總數增加184萬餘人,成長幅度9.5%。值得注意的是,這是在2008年次級房貸風暴發生後,第二年成長幅度在1%左右,在2000年至2007年間,合夥數量成長幅度在3.6%-8.5%間。
數據顯示資產在1億美元以上的合夥團體,共有1萬8千餘家,占合夥團體申報資產72.3%,表示在美國合夥團體絕非僅受中小企業的偏愛。另外,若從行業別來看[5],金融保險業之合夥團體申報資產占全體54.4%,位居第一;其次為不動產相關業,占全體之23.7%。
二、有限合夥數量持平而獲利維持優勢
在所有以合夥身分報稅之團體中,有限合夥LP此種合夥形式,仍表現十分亮眼。在盈利 (Profits) 表現上,有限合夥2009年盈利金額[6]約達1393億美元,占全部合夥團體盈利34%。事實上自2000年起,有限合夥LP盈利金額占合夥團體總獲利比例,始終維持在31%-39%間。
至於在數量上,有限合夥LP則表現持平。2000年至2005年間,有限合夥數量以和緩幅度上升,2006年起則略微下降;以2008年至2009年間為計[7],有限合夥LP數量別為411,698家與396,611家,占總數12.5%。
三、有限責任公司(Limited Liability Company, LLC)數量大幅成長
相對於有限合夥LP在盈利上的表現,有限責任公司LLC則在數量上有驚人表現。2009年間有限責任公司LLC數量達到1,969,446家,占合夥團體總數62.2%[8]。與2008年相比,成長幅度達到3.8%[9],遠高於合夥團體總成長幅度0.7%。事實上自1995年起,有限責任公司LLC的數量每年皆有大幅度成長。2009年與1995年相比,有限責任公司LLC數量成長達15倍以上。且自2002年起,有限責任公司LLC數量便占合夥團體總數量50%以上[10]。
至於在盈利 (Profits) 方面,有限責任公司2009年則達到約889億美元。相較於有限責任公司LLC在數量上占總數62.2%,獲利量則僅占所有合夥團體21.6%[11],主要原因為其損失比例過高所致[12]。惟值得注意的是,在2008年發生次級房貸風暴前,有限責任公司LLC盈利占全體合夥團體比例亦約在3成左右,與有限合夥相近。但在2008年有限責任公司盈利則下降為11%左右[13]。
四、普通合夥( General Partnership, GP)數量快速萎縮
另一項常見的合夥團體,為全體合夥人負無限責任之普通合夥GP。觀察本次統計發現,在2009年間,普通合夥GP數量為624,086家,相較於2008年669,601家,下降6.8%。且與1995年1,167,036家相比,更下降53.5%。顯見普通合夥GP在數量上呈現快速萎縮之趨勢,而逐漸不受到美國投資者的青睞[14]。至於在盈利表現上,除2009年約為621億美元外,2000年至2009年間皆在700-900億美元間起伏。
參、趨勢分析
針對上述針對美國近期合夥團體發展之歸納,本文提出下列看法:
一、稅制改變造成有限責任公司LLC數量成長
依據美國稅法規定,一般公司(Corporation)與合夥團體最大的差異在於,一般公司(Corporation)具備課稅主體地位,而公司在課稅後 尚須就股東個人所得再次課稅,形成雙重課稅(Double Taxation)。反之,合夥團體採單層課稅(Pass Through Taxation)方式[15],多半情況下納稅價額較低。因此,有限合夥LP等相關合夥組織過去十分受到投資人喜愛。
相較下,有限責任公司(LLC)之定位究竟屬於一般公司法人(C corporation)或是合夥,在發展初期並不明確,而未受到投資者廣泛運用。但此情況在1996年改採「勾選原則」(Check The Box Rule)後有了改變。在勾選原則下,除權益得公開交易之企業必須以一般公司法人(C corporation)方式課稅外,容許非公司型組織(unincorporated entities)可以自由選擇稅制[16]。此稅制上的改變,使得有限責任公司LLC得排除雙重課稅的不利,而享有合夥團體單層課稅之優惠。本文推測,1996年起有限責任公司 LLC 在數量上大幅度的成長,應係與此有關。
二、有限合夥LP在金融投資相關行業的運用未受影響
從數據上看來,相較於有限責任公司LLC數量的大幅提升,有限合夥LP則未出現明顯的排擠效益。有限合夥LP數量持續維持在40萬家左右。且如前述所提,有限合夥LP擁有相當高的獲利能力 ( 高達1393億美元 ) ,而深入觀察可發現,當中包括創業投資等「其他金融投資活動」 (Other financial investment activities)[17]獲利高達716億美元[18]。顯見 有限合夥LP在金融投資相關產業仍具有關鍵重要性。
從本次美國所提出的稅收統計報告可以發現,毋論是有限合夥LP抑或是有限責任公司LLC之組織形態,在未來都將具有相當重要性。面對如此之發展,我國實應思考立法開放此等新型態商業組織之可能。因唯有商業組織多元化的發展,才有機會使更多投資者找到符合其個人需求之投資模式,將資金投入市場,進而促進資金的流通與經濟的發展。在面對全球化的今日,各國間無不為吸引資金進入,爭相採取不同開放手段的此刻,謹慎而適度地開放商業組織政策,將能為國家競爭力帶來深遠的助益。
[1]Nina Shumofsky & Lauren Lee, Partnership Returns, 2009 , Internal Revenue Service Statistics of Income Bulletin Fall 2011 Washington, D.C. 68 (2011).
[2]此處合夥團體是指依據美國國內稅法 ( Internal Revenue Code, IRC) Subchapter K納稅之企業。依據IRC規定,商業團體報稅時,需依據其組織性質不同,分別按Subchapter C、Subchapter S、Subchapter K進行報稅。原則上一般公司 (Corporation) 應依據Subchapter C申報;符合Subchapter S條件之公司 (Corporation) 則可依Subchapter S申報,亦即俗稱之S公司;至於其他非公司 (Corporation) 之企業,則可依據「勾選原則」(Check The Box Rule)選擇依Subchapter C 或 Subchapter K進行報稅,包括有限合夥、普通合夥、有限責任公司、有限責任合夥、有限責任有限合夥。其中有限責任合夥是指在普通合夥基礎下,使普通合夥人無需為其他合夥人不當或過失行為負責之組織;如是在有限合夥基礎下,賦予普通合夥人此有限責任範圍,則為有限責任有限合夥。 See Internal Revenue Code, 26 U.S.C. §§ 1-9834. (2012)
[3]Nina Shumofsky & Lauren Lee ,supra note 1, at 84.
[4]id., at 70.
[5]id., at 72.
[6]惟其金額卻由2008年約1782億美元,下降為1393億美元,Id., at 156-7.
[7]Id., at 156-7.
[8]Id., at 73.
[9]Id., at 68.
[10]Id., at 73.
[11]Id., at 75.
[12]Id., at 151.
[13]Id., See Figure I, at 75.
[14]至於以普通合夥為基礎所衍生的有限責任合夥,在數量上至2009年間僅達到117,660家,並未因普通合夥下降而大幅提升。See id ., at 157.
[15]參見羅怡德,〈美國「有限合夥」之介紹與討論〉,《社經法制論叢》,第6期,頁193以下(1990)。
[16]Robert W. Hamilton著,齊東祥譯,《美國公司法(The Law of Corporations)》,法律出版社,第5版,頁26-27 (2007)。
[17]依據北美行業分類系統 (The North American Industry Classification System, NAICS) 定義,「其他金融投資活動」 (Other financial investment activities) 係指:1.除銀行、證券商、商業契約經銷商外,其他買賣金融契約之主體;2.除證券商、商業契約經紀人外,其他買賣金融契約之代理人或經理人;3.除證券商或商業契約經銷商外,提供其他投資服務,包括投資組合管理、投資諮詢、信託、保管服務等。available at http://www.census.gov/cgi-bin/sssd/naics/naicsrch?code=5239&search=2007%20NAICS%20Search (last visited 04/18,2012)
[18]supra note 1, at 156.
歐盟27個會員國於5月24日在布魯塞爾通過新的電視指令(neue Fernsehrichtlinie),內容涉及「在線或離線電視服務(Fernsehen on- und offline)」、「廣告規範」及「來源國原則(Herkunftslandsprinzip:指跨國服務或商品依據來源國之標準處理。)」。新的電視指令乃源自於有18年歷史之電視指令,並重新命名為「影音媒體服務指令(Richtlinie über Audiovisuelle Mediendienste)」,指令內容包括線上直播節目、近似隨選視訊(Near-Video-on-Demand)、非線性傳輸節目(nicht-linear verbreitetes Programm)。 約一年半前歐盟就電視指令之規範,如何種經由網路傳輸之內容適用電視指令、廣告規範及來源國原則等議題加以討論;不具商業性之私人網站內容,如旅遊紀錄片,則不在本指令適用範圍。歐洲媒體法研究機構負責人Alexander Scheuer指出,類似YouTube網站,因其本身提供服務方式不涉及編輯性責任(redaktionelle Verantowrtung),故亦不在本指令適用範圍內;惟如YouTube將電視頻道引進其網站,則可能有適用本指令之餘地。Scheuer另外指出如何界定非商業性之難題,例如在個人儲存短片的網頁上打廣告,是否具商業性,值得討論。 指令中最具爭議的部份,除新聞時事及兒童節目仍嚴格禁止置入性行銷(Product Placement)外,新電視指令有條件放寬業者經營置入性行銷,前提是節目播出前須向觀眾為置入性行銷之揭露,此項放寬將使正常節目進行因廣告而中斷。另外關於禁止速食廣告於兒童節目中播出之建議則未被採納。 值得關注尚有適用來源國原則下對特定網站所發的禁制令問題,原則上對節目提供者只適用其來源國之法律,但指令第2a條明訂若有緊急情況(如內容違反青少年保護規定),可以對該特定網站發出制禁令,以防止規避會員國較嚴格之相關規定;而是否有緊急情況須提交委員會裁決。 新電視指令通過後引起多方關注,未來適用上仍存有挑戰空間。
特別301報告特別301報告(The Special 301 Report)是由美國貿易代表署(Office of the United States Trade Representative, USTR)公布之關於世界各國智慧財產權年度報告。1988年,美國國會修法增訂「特別301條款」,要求美國貿易代表署針對智慧產權保護或市場開放程度不足之國家,按嚴重程度於特別301報告中分列為「優先指定國家」(Priority Foreign Country)、「優先觀察名單」(Priority Watch List)和「一般觀察名單」(Watch List),並對「優先指定國家」啟動調查及協商談判。 美國每年對世界各國是否有效保護智慧財產權進行審查,並提出特別301報告。報告羅列範圍廣泛,包含: 世界各國智財權保護以及執法有效性; 網路銷售各種盜版及仿冒商標之商品情形; 世界各國貿易壁壘(market access barriers),例如貿易市場不透明、歧視性、或其他限制貿易的措施等,是否妨礙取得醫療保健(healthcare)或其他受智財權保護的資訊。 2019特別 301 報告(2019 Special 301 Report)於2019年4月公布。其中加拿大因簽署了《美墨加協定》(United States-Mexico-Canada Agreement, USMCA),實質改善加拿大智慧財產權環境,因而加拿大已從優先觀察名單轉為一般觀察名單。此外,中國連續15年被列入優先觀察名單,報告認為中國迫切需要進行基本的結構性改革,加強智財權保護。我國自1998年起被列入一般觀察名單,直至2009年除名,至今均未上榜,亦表美國肯認我國的智財保護發展。
德國擬提出風險資本參與法(Wagniskapitalbeteiligungsgesetz)協助創新與科技公司籌資德國聯合內閣最近就研議中的風險資本參與法(Wagniskapitalbeteiligungsgesetzes, WBG)之規範重點達成共識;聯邦經濟及技術部部長隨即對外表示,本法對於德國年輕的創新型企業意義非凡,蓋風險資本乃是創新與科技公司籌資的重要管道,WBG之制定是希望能創設成一個可以吸引國際風險資本在德國投資的法規環境。 根據協議內容,WBG以資本額在2千萬歐元以下、設立年限十年以下的公司為適用對象,據此,不僅是設立初期的公司可以籌募到風險資本,處在成長期需要大量資金的公司亦將可以獲得風險資本的挹注。此外,WBG也將規定,提供風險資本的創投公司(Wagniskapitalgesellschaften)未來將被視為資產管理者,其對於創投基金(Beteiligungsfond)提供資產管理服務之行為,將不會被課徵營業稅。 根據德國政府規劃,從法制面鼓勵創新與科技公司之設立,應採三軌並行:首先是創設吸引國際風險資金的投資環境,使創新與科技公司更容易取得所需資金,此即WBG之立法目的所在;其次,未來將進一步藉由開放投資管道,確保中小企業籌資之機會,因此有必要修正現行之投資企業法(Gesetz über Unternehmensbeteiligungsgesellschaften);最後將進一步制定投資風險規制法(Gesetzes zur Begrenzung der mit Finanzinvestitionen verbundenen Risiken),管控投資風險。透過上述措施,可望為創新與科技公司之設立奠定良善之基礎,增加此類型公司設立的數目。 德國內閣預計將在今(2007年)夏正式提出WBG之草案,與此同時,也將配套提出投資風險規制法之規範重點,並一併修正投資企業法,若WBG可順利經國會審議通過,最快將可自明(2008)年1月1日起生效適用。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)