何謂「監理沙盒」?

  沙盒(Sandbox)是一個讓小孩可以安全遊玩與發揮創意的場所,在電腦科學領域,沙盒則是用來代稱一個封閉而安全的軟體測試環境。而監理沙盒(Regulatory Sandbox),則是在數位經濟時代,為因應各種新興科技與新商業模式的出現,解決現行法規與新興科技的落差,故透過設計一個風險可控管的實驗場域,提供給各種新興科技的新創業者測試其產品、服務以及商業模式的環境。

  在監理沙盒當中,業者將暫時享有法規與相關責任的豁免,減低法規遵循風險,以使業者能夠盡可能地測試其技術、服務或商業模式。透過在測試過程中與監管者(通常為政府主管機關)的密切互動合作,針對在測試過程中所發現或產生的技術、監管或法規問題,一同找出可行的解決方案,並作為未來主管機關與立法者,修改或制定新興科技監管法規的方向跟參考。

  監理沙盒一詞源自英國在2014年因應Fintech浪潮所推動的金融科技創新計畫,而類似的概念也出現在日本2014年修正產業競爭力強化法當中的灰色地帶消除制度與企業實證特例制度。我國則於2017年通過金融科技發展與創新實驗條例,為我國監理沙盒的首例,2018年我國持續推動世界首創的無人載具科技創新實驗條例立法,為我國建構更有利於產業創新的法制環境。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 何謂「監理沙盒」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8091&no=65&tp=1 (最後瀏覽日:2025/09/19)
引註此篇文章
你可能還會想看
從推動體系及法制架構思考我國文化創意產業發展之整合以南韓推動組織與法制架構為例

英國BSI發布自駕車發展與評估控制系統指引

  英國標準協會(British Standards Institution, BSI)於2020年4月30日發布「PAS 1880:2020:自駕車控制系統開發及評估指引(PAS 1880:2020: Guidelines for developing and assessing control systems for automated vehicles)」,該文件提供一系列的準則,提供自駕車研發者於發展控制系統時可安全有效的進行布建;本文件所涵蓋之自駕車類型主要為於(研發者)所設計及規劃之特定運行範圍內(operational design domain,以下簡稱ODD)下不需人工介入即可運送旅客與貨物者。   指引中就自駕車之控制系統設計進行分類,並提出研發者應針對不同目的與重點進行說明以及相關應遵循事項,其中應包含以下項目: 任務:自駕車之任務應被定義。 ODD:自駕車之ODD應被定義並且應可涵蓋其所有執行任務之面向。 感知運作:於任務中感知運作系統執行時,自駕車應可判斷其是否遵循ODD之範圍,並可提供相關資料予決策系統。 決策:當決策系統執行時,自駕車應可實施所有為達成任務所決策規劃之活動。 控制運作:當控制運作系統執行時,自駕車應可於正常情況下控制其動作以完成任務,並可於無法執行正確行動時採取合適之措施。 監控運作:當監控運作系統執行時,於整個任務過程中,自駕車應可監控其自身之運作。 人身安全、系統安全與有效(Safe, secure and effective):自駕車應可於所有時刻皆保持運作之人身安全、系統安全性與有效性。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

新冠疫情下日本的數位經濟實踐之路

新冠疫情下日本的數位經濟實踐之路 資訊工業策進會科技法律研究所 2021年3月9日   2021年2月,日本經濟團體聯合會(以下簡稱「經團聯」)發布其所舉辦有關「後疫情時代的數位政府與數位經濟」之座談會研討內容。該座談會於2020年12月舉辦,主旨為探討日本持續推進數位轉型與邁向社會5.0目標之過程中,面對新冠肺炎疫情之擴大,有何待解決之課題[1]。 壹、主要問題   數位轉型之層面所涉甚廣,本文認為可初步分為政府面、企業面及個人面。首先,就政府面而言,可探討如何建立e化政府並提供民眾便捷服務。其次,就個人面而言,則可能涉及消費者資料之蒐集與個人隱私資料保護之議題。最後,就企業面而言,則包含同種企業或不同企業間彼此蒐集到的資料共享、利用及分析。   針對企業間,擔任數位經濟推進委員長之篠原弘道於會中指出,數位轉型致力於價值創新,然而,日本業界間的數位轉型存在一極大的待突破問題,即是彼此對於資料資源之分享,尚存不信任甚且互相猜疑,此將不利於資料共享之發展。篠原弘道進一步說明,數位轉型以突破空間與距離之屏障為特色,欲突破此一屏障有賴於民間企業彼此間的合作與信賴,僅只單一企業的資料本身無法有效達至此目標,呼籲日本國內企業能協力合作,強化數位流通與交流[2]。   執此,如何促進企業間的資料分享,建立互相信賴的關係,突破業界間彼此藩籬,即為官方及民間所應努力的目標。 貳、具體案例   就民間而言,日本已有民間發起之企業共享平台,例如2018年5月至12月,三菱房地產於東京車站周邊之大丸有地區進行實驗性的OMY(大手町、丸之內到有樂町一帶的區域,日本俗稱Daimaruyu,簡稱OMY))資料活化計畫,驗證跨行業別企業間的資料利用分配與有效性,期盼能將資料應用於促進該地區的經濟成長、帶動觀光發展,甚至規劃災害措施[3]。   提供該計畫資料服務平台的富士通有限公司經理池田榮次指出,該計畫為了建立彼此信任感,而非一味地僅關注於資料的分析,進行了多達12間公司之間的對談,並也得到了一定的成效。 參、事件評析   有關企業面的資料活用,本文認為可大致分為「單一公司」、「同業種內」及「異業種間」三者。單一公司之資料活用,以壽司郎為例,其將每盤菜餚均以IC標籤管理,藉以蒐集每盤菜餚之新鮮度、銷售情況。從而,累積之資料即可運用於掌握消費者喜好,並避免食材之浪費等[4]。同業種內則涉及相同類別的企業間,藉由共享資料以減低成本。例如不同藥物研發公司,藉由樣本試驗共享,從而擴增實驗母群體之數量[5]。異業公司則可能由位於同一地區之不同企業所構成,例如前揭大丸有OMY資料活用計畫。   經團聯所提出之議題,乃著眼於同業種內及異業種間的跨公司間資料交流不易,因而提出民間企業積極跨越藩籬之呼籲。我國於推動資料共享平台等相關政策時,亦可思考政府端可提供何種支持及資源,以側面促進同種或不同種企業間之資料共享意願;同時,如何令企業理解到彼此間的合作協力,將是新興價值得以開拓的寶貴契機,亦是一大值得省思之重點。 參考連結 日本經濟團體聯合會2月份月刊特集〈後疫情時代的數位政府與數位經濟〉https://www.keidanren.or.jp/journal/monthly/2021/02_zadankai.pdf [1]〈ポストコロナのデジタルガバメントとデジタルエコノミー〉,《経団連月刊》,2月号期,(2021)。 [2]同前註,頁15。 [3]〈異業種データ活用で、東京のビジネスエリアが生まれ変わる【前編】〉,Fujitsu Journal,https://blog.global.fujitsu.com/jp/2019-07-26/01/,(最後瀏覽日:2021/03/09)。 [4]〈15社のビッグデータ活用事例から学ぶ、成果につながる活用の方法〉,https://liskul.com/wm_bd10-4861#3_IC(最後瀏覽日:2021/3/9)。 [5]独立行政法人情報処理推進機構,〈データ利活用における重要情報共有管理に関する調査 調査実施報告書〉,頁9(2018)。

TOP