英國上議院人工智慧專責委員會(Select Committee on Artificial Intelligence)2018年4月18日公開「AI在英國:準備、意願與可能性?(AI in the UK: ready, willing and able?)」報告,針對AI可能產生的影響與議題提出政策建議。
委員會建議為避免AI的系統與應用上出現偏頗,應注重大量資訊蒐集之方式;無論是企業或學術界,皆應於人民隱私獲得保障之情況下方有合理近用數據資訊的權利。因此為建立保護框架與相關機制,其呼籲政府應主動檢視潛在英國中大型科技公司壟斷數據之可能性;為使AI的發展具有可理解性和避免產生偏見,政府應提供誘因發展審查AI領域中資訊應用之方法,並鼓勵增加AI人才訓練與招募的多元性。
再者,為促進AI應用之意識與了解,委員會建議產業應建立機制,知會消費者其應用AI做出敏感決策的時機。為因應AI對就業市場之衝擊,建議利用如國家再訓練方案發展再訓練之計畫,並於早期教育中即加入AI教育;並促進公部門AI之發展與布建,特別於健康照顧應用層面。另外,針對AI失靈可能性,應釐清目前法律領域是否足以因應其失靈所造成之損害,並應提供資金進行更進一步之研究,特別於網路安全風險之面向。
本報告並期待建立AI共通之倫理原則,為未來AI相關管制奠定初步基礎與框架。
本文為「經濟部產業技術司科技專案成果」
今(2021)年10月發布的2021年全球創新指數(GII)報告反映了創新如何塑造和維持世界的運作,最明顯的例子就是COVID-19疫苗的快速發展。此外,數位創新也提供了公部門和私部門應對大流行病浪潮的解決方案,例如接觸者追踪工具、應用程序和診斷方法等。 實際上在2020年9月,也就是COVID-19被宣佈為大流行病的六個月後,第13屆年度GII就預測了未來一年的研發支出將保持強勁。儘管大流行病造成了毀滅性的人員傷亡和經濟衝擊,但研發支出、智慧財產權申請和創業投資(VC)交易都在大流行病前的高峰上持續增長。 在2021年的GII報告中提到,在全球研發支出前2,500名的企業中,約有70%已發布了2020年的研發支出數據,從數據中可發現在2020年整體大約有10%的研發支出增長,且大約60%的企業聲稱其研發支出增加。在智慧財產權方面,向世界智慧財產權組織(WIPO)提交的國際專利申請在2020年創下歷史新高。2020年專利申請在醫療技術、製藥和生物技術呈現明顯增長,與前幾年形成鮮明對比,當時數位通信和電腦技術是增長最快的領域。與健康相關領域的專利活動反映了大流行病期間科學活動的持續增長,且鑑於最近醫療保健與加速數位化的研發突飛猛進,可以預期這些領域的專利申請將在未來幾年繼續強勁增長。
90億基金挹注 生技業添活水為推動國內生技業發展,行政院開發基金審核通過90億元成立三種「生技創業種子基金」,今年將開始運作,希望發揮拋磚引玉功能,吸引異業的大型民間資金投入生技產業。而為加強BIO-IT跨領域異業科技整合,行政院近期內還要推動Mega Fund大型基金參與,建構台灣成為亞太地區最活躍的生技重鎮。 生技產業被公認為21世紀的明星產業,台灣也列為兩兆雙星產業發展計畫的重點推動項目,並提出具體執行策略與願景目標,以建構台灣為擁有亞洲區最活躍的生技創投產業、基因體研究重鎮、人體臨床試驗中心與亞熱帶花卉王國,成為國際生技與製公司進入亞洲市場的重要門戶。 不過行政院科技顧問組在立法院科技與資訊委員會備詢時指出,台灣現雖已有223家創投公司,其中61家近三年正逐漸將生技納入投資組合。可是國內的投資人對研發型生技產業仍瞭解不夠,投資在生技創投資金雖有增加,著重投資於國內技術移轉及產業化過程中的草創期資金缺口,但行政院開發基金日前已通過三個「生技創業種子基金」,金額90億元,卻還沒有開始運作,異業的大型民間資金也還沒有進入生技產業。 為強化生技政策與資源統籌,行政院決定今年設立「生技產業策略諮議委員會」,替台灣生技產業未來方向作整體評估與規劃,並引導國際聯盟的佈局。
美國政府強化推動「更佳建築倡議」計畫美國總統歐巴馬於2011年2月3日,根據美國振興方案(Recovery Act)預算案,宣布推動「更佳建築倡議」(Better Buildings Initiative)計畫,這個倡議計畫承諾透過一系列的獎勵,促進私人企業在建築節能改善上進行投資,並以到2020年要讓商業建築的能源效率提高20%做為目標。 在今年的6月19日,美國能源部與商業部共同宣布選定三個「卓越建築營運中心」(Centers for Building Operations Excellence),由美國能源部和商務部國家標準與技術研究院的製造業擴展夥伴關係(National Institute of Standards and Technologies’ Manufacturing Extension Partnership,NIST MEP)聯合資助130萬美元成立此三個中心,乃為推動「更佳建築倡議」計畫的相關行動之一,希望藉由三個中心的運作,來達成提高能源效率20%,並且期望一年可以減少約400億美元的能源支出。 「卓越建築營運中心」將會與各大學、地方社區、技術學院、貿易協會,以及能源部的國家實驗室合作,建立培訓計劃,提供商業建築專業人士所需要的關鍵技能,以提升建築效率,同時降低了能源的浪費和節省資金。 此三個中心分別位於加州、賓州以及紐約州,提供機會讓當前和未來有可能參與潔淨能源經濟的人,學習寶貴的技能,並且著重在於開發課程以及試點培訓方案,以培育優良的建築的經營者、管理者與能源服務供應商,進行商業、工業與教育建築物上的調整與能源管理。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).