美國財政部於今(2018)年7月31日發布一份重要報告,呼籲對金融科技領域的創新要採取更靈活,更有利的監管方法。這份報告主題為「非銀行金融、金融科技和創新」,其內容提及加密貨幣和分散式帳本技術(Distributed Ledger Technologies,DLT),並指出該些技術正由金融穩定監督委員會(Financial Stability Oversight Council)的工作組來主導進行跨部門的研究。整體來說,該報告表明美國政府大力推動新興金融技術的發展,並使現有的監管框架現代化,主張更加精簡和適當的監督,以消除發展過程中的障礙。並對於可能阻礙金融科技發展的法規,提出合理化建議,包括協調各州間加密貨幣交易的資金移轉立法。
美國財政部提及金融服務業正在開發的一系列DLT應用程式,其優勢仍有高度不確定性,因而進一步倡導使用監理沙盒,並鼓勵創建實驗室、工作組、創新辦公室,和其他讓行業參與者直接接觸監管機構的管道。監管機構和創新者之間的共生關係,是支持美國經濟和保持全球競爭力所必需的。該報告最後結論提到美國必須與新興技術並肩一起進步,要以不限制創新的方式來適當調整原有的監管策略。美國監管機構必須比過去更加靈活地履行職責,不能給創新的發展帶來不必要的阻礙。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
美國、日本、韓國於2024年4月25日舉辦首屆「顛覆性技術保護網路高峰會」(Disruptive Technology Protection Network Summit,下稱高峰會),就顛覆性技術保護展開正式合作。 此高峰會係為履行三國於2023年8月18日「大衛營」(Camp David)峰會作出之「未來每年度應至少舉行一次三方國家會談」承諾。美國積極利用此高峰會,深化美國顛覆性技術打擊小組(Disruptive Technology Strike Force)與日本、韓國相應執法單位的資訊交換機制或經驗分享,加強技術保護及打擊相關犯罪活動。有關本次高峰會進展,簡要彙整如下: 一、經驗與案例分享:三國執法單位各自說明其技術保護工具、政策之最新舉措,並進行執法案例分享。 二、相關執法單位簽署合作意向書: (一)美國司法部(The Department of Justice)、日本警察廳(警察庁)和韓國法務部(법무부)共同簽署「深化技術外洩執法資訊分享合作意向書」(Letter of intent on deepening information sharing for tech leak law enforcement)。 (二)美國商務部(The Department of Commerce)、日本經濟產業省(経済産業省)和韓國產業通商資源部(산업통상자원부)共同簽署「實施出口管制合作意向書」(Letter of intent for cooperation on export control implementation)。 三國共識非法出口貨品或移轉技術行為,已對國家安全、經濟安全構成威脅,除持續優化相關法規外,有必要強化三國「執法面」連結,進行較即時的打擊犯罪跨國合作,防範民族國家境外勢力(Nation-state adversaries)以不正當手段獲取先進技術,並建立更全面的國際「顛覆性技術保護網路」(Disruptive Technology Protection Network)。
演算法歧視將適用於《紐澤西州反歧視法》2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。
美國加州於6月28日通過新版個資隱私法規加州立法體系在2018年6月28日通過了美國最嚴格的個人資料隱私法規,該法案無異議通過,並已經加州州長Jerry Brown簽署同意,將於2020年1月1日施行,以賦予科技產業修正其內部政策的緩衝期間。 該法案之所以如此速戰速決,據媒體解讀是為了避免該法案內容成為加州11月選舉併公民投票之公投提案的一部分。如以公投方式通過這部法規,日後修正時將重新以公民投票進行,有造成修法困難的疑慮;而以立法者立法方式通過這部法規,賦予立法者有對其修訂改正權限,於日後能以一般修法程序進行修法。 該法案內容與2018年5月25日實施的歐洲GDPR規範相近似,將造成加州原先隱私權規範些許改變,與倡議最初法案不同的地方在於,揭露接受個資第三人的相關資料時需揭露該第三者之類型(category)而非其身分。 隨著本年度加州消費者隱私保護法(The California Consumer Privacy Act)的修法,大型科技公司如Google和Facebook等蒐集有大量消費者個人資料者,都將受到重大影響,依據該法,一般使用者可以向企業確認被蒐集的個資種類以及個資販賣流向,亦可以請求中止個資的蒐集及販賣,提升了一般使用者在以往對於個資使用上的地位。 自歐洲GDPR規範實施以來至目前,美國聯邦法尚未有相應強度之規範,本次加州修法可認係GDPR實施以來美國國內第一部因應而修正之法律。
英國推動智慧電網 – 對隱私疑慮的回應與提供用戶能源使用量資訊之規劃