美國發起「投資報酬計畫」(Return on Investment Initiative, ROI)全面檢視科研成果商業化法制

  川普總統在2018年4月發布「總統管理議程」(President’s Management Agenda)將國家科研成果商業化之發展視為「聯邦跨機關優先目標」(Cross-Agency Priority Goal, CAP Goal)。為維持美國全球科技創新領先地位,美國政府每年投資約1500億美元於各聯邦所屬大學與研究機構進行科技研究。美國國家標準與技術中心(NIST)與白宮科技政策辦公室(OSTP)聯合發起「投資報酬計畫」(Return on Investment Initiative, ROI),宗旨為釋放美國創新(Unleashing American Innovation),讓政府投資預算發揮科研補助之最大效益。

  計畫目的包括:1.評估現行政府從事技術移轉指導原則,檢視應予以維持與待改革之處;2.吸引後期研發、商業化與先進製程的技轉投資,並降低法規阻礙;3.支持科研創新產官學合作模式與技轉機制;4.有效移除技轉阻礙以利加速技轉成效,並聚焦於國家重要產業發展的新興措施;5.評估聯邦政府資金運用指標成效;6.創造激勵學研機構提升技轉成效之誘因。

  NIST調查指出,阻礙技轉發展之原因包括:1.技轉與智慧財產權協商所涉高額交易與時間成本;2.不同政府單位對法規之解釋、適用與實踐意見相歧;3.智慧財產權保護不足、技術授權使用限制與政府行使介入權(march-in rights)限制;4.公務員參與科技新創與衍生企業(spin-off)限制與利益衝突規範。此ROI計畫已於2018年7月30日完成各方意見徵詢,總計共104份。預計於2019年年初,做出完整分析報告與法制建議。

相關連結
相關附件
你可能會想參加
※ 美國發起「投資報酬計畫」(Return on Investment Initiative, ROI)全面檢視科研成果商業化法制, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8100&no=67&tp=1 (最後瀏覽日:2025/08/14)
引註此篇文章
你可能還會想看
德國電信服務法下訊息儲存服務提供者之法律責任

員工分紅市價八折課稅

  現行促進產業升級條例第19條之1規定,為鼓勵員工參與公司經營,並分享營運成果,公司員工以其紅利轉作服務產業增資,而取得新發行記名股票,採「面額」課徵所得稅。而依據所得基本稅額條例第12條第1項第5款規定,對於員工「可處分日次日時價」與股票面額之間的差額部分,另計入最低稅負制課稅。   台聯黨團認為現行促產條例第十九條之一關於員工分紅配股以面額課稅規定,使不少高科技產業上市櫃公司,利用促產條例優惠,壓低員工本薪,以分紅配股吸引人才,造成營業成本低列,將薪資費用轉嫁給股東,扭曲財報,使高獲利的高科技產業和薪資紅利豐厚的科技人租稅優惠多繳稅少,造成政府稅收短缺,因而提出修改案,改由「市價的八成」課徵所得稅。立法院 經濟能源委員會初審通過修正促進產業升級條例,將員工分紅配股由「面額」改依「市價八折」課稅,上市櫃公司市價以配股發放日前一個月均價為準,未上市櫃公司則以配股發放日淨值為準,此規定 引發高科技業者反彈,並向經濟部反映。   目前員工分紅改為市價的八成課稅雖通過委員會初審,但提交下次院會討論前,須經朝野協商。經濟部表示,此案初審後尚需經過立法院政黨協商,再交由院會決定。員工分紅配股課稅方式改變,應要有配套才合宜(例如一定之緩衝期間讓業者調整員工薪資結構),若在配套未完成前就做決定,是比較不好的決策。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

Mcdonald’s 品牌資產保衛策略

  麥當勞公司已申請McDonald’s 與Logo- M用於咖啡,更於九月份將其所販售的研磨咖啡與咖啡豆,以 “Mc Café” 申請商標註冊,意味著未來這間全球最大的漢堡連鎖店,將於店內甚或超市販售『麥當勞咖啡』。『如同大部份的企業,我們註冊許多商標用以保護我們的品牌資產!』麥當勞發言人 Danya Proud表示這並非奇聞。      近幾年,麥當勞成功的因素在於擴展它們的飲料事業,引進優質咖啡與水果冰沙,而選擇在全球速食連鎖店成長緩慢的時候,進入袋裝咖啡市場,亦是個創新手法。 星巴克的商標申請亦侵略性的跳脫普遍存在的咖啡廳而進入零售市場,一九九八年即開始自行經營袋裝咖啡事業,今年七月販售於超市、藥妝店、量販店的咖啡市占率更由25.6 %提升至28.2 %。     其實,麥當勞早在五年前即以 “Mc Café”,擴張咖啡與特色飲料事業,而此些利潤遠高於原本的速食餐點,且間接促使許多顧客駐足停留店內,也許是眼看Dunkin` Donuts於超市與自家甜甜圈店強力販售袋裝咖啡,讓麥當勞思考複製此模式。然而此舉也可能僅止為預防手段,如果麥當勞無意進入袋裝咖啡市場,“Mc Café ”商標也可以防止競爭者以『麥當勞品牌』販售咖啡。

TOP