美國最高法院在今(2018)年1月12日決定接受南達科塔州的上訴,就South Dakota v. Wayfair一案(下稱Wayfair案)進行審理,以決定州政府是否有權對網路零售業者課徵銷售稅。依據最高法院在1992年Quill v. North Dakota (下稱Quill案)所確立之原則,若網路零售商在該州無實體呈現 (physical presence),州政府即不得對該零售商向該州居民所銷售之貨物課徵銷售稅。
在1992年Quill案中,最高法院認為州政府對於遠距零售者(remote retailer)課稅,將違反潛在商務條款(dormant commerce clause),理由是對於無具體呈現的零售商課稅,將使其面對許多不同的課稅管轄權,造成零售商巨大的負擔,並增加州際商務的複雜性。南達科塔州認為科技的進步已使得零售商商所面臨課稅的複雜度降低,故在2016年通過法案對無實體呈現之電商業者課稅,因而引發相關爭訟。
本案在今年6月21日宣判由南達科塔州勝訴,判決指出隨著電子商務的成長及資訊科技的進步,課稅並不如過往會對業者造成具大的負擔,同時也可滿足正當程序與潛在商務條款的要求;此外,Quill案將會造成市場的扭曲,其所造成的稅捐保護傘將對具有實體呈現的業者造成不公平的競爭。因此認定Quill案已難以適用於現在的電子商務市場。
但本案仍有四位大法官反對,認為應由國會立法來糾正此一錯誤。因為國會並未明確授權州政府可對跨州零售交易課稅,因此才有潛在商務條款的適用,換言之,國會實際擁有立法授與各州徵收遠距交易之權力,在115期國會當中,也已經有相關的法案被提出,包括Remote Transaction Parity Act of 2017 (H.R. 2193)、Marketplace Fairness Act of 2017 (S.976)。在最高法院完成此一判決後,後續可繼續觀察美國國會是否會以立法的方式,授與州政府對跨州商業貿易課徵租稅。
歐洲專利局(European Patent Office,下簡稱EPO)於2020年11月發布了裁定撤銷歐洲專利EP2771468的書面理由。EP2771468是the Broad Institute of Massachusetts Institute of Technology(以下簡稱Broad Institute)持有的一項關於CRISPR(clustered, regularly interspaced, short palindromic repeats)技術的專利。2020年1月,EPO的上訴委員會(Board of Appeal,下簡稱BoA)裁定在該專利的優先權要求被駁回後,專利應予以撤銷。 CRISPR是相對簡單但功能強大的基因編輯工具,使科學家能夠更改DNA序列並修飾基因功能。它具有改變醫學、診斷、治療和預防多種疾病的潛力,已被用於開發診斷試劑盒,可用於檢測傳染病,例如Covid-19。該技術預估在未來五年的價值將超過50億美元。 一般而言,專利申請日是評估專利有效性的日期,但有的專利可能會要求已揭露該發明之較早專利申請的申請日作為優先權日。在本案裡,專利的優先權日期尤為重要,因為還有許多其他機構和研究人員聲稱在Broad Institute之前就已經發現CRISPR技術。 在2018年,EPO的異議庭(Opposition Division)認為EP2771468專利無權享有部分專利的優先權。因為其主張優先權的美國專利臨時案共有四名申請人,但在EPO提交專利時,有一位申請人未包含其中。因此,異議庭認為,該專利不能主張美國專利的優先權,導致EP2771468因為在申請日前有其他公開文獻而喪失新穎性。 Broad Institute提出上訴,但BoA駁回了上訴,並指出需要所有申請人在初始申請和後續申請中都列出才能享有優先權。 由於優先權制度是在申請專利保護時常會運用的布局手段,後續在運用優先權時,應特別注意申請人的一致性,避免因優先權無法主張而影響專利的有效性。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
問題在號碼?(下)---談網路電話服務(VoIP)號碼核配與網路互連管制問題 新近奈米科技智財法制之發展趨勢