英國交通運輸部公布「交通運輸之未來」公眾諮詢文件

  英國交通運輸部及聯網與自動駕駛車中心(Centre for Connected and Autonomous Vehicles, CCAV)於2018年7月30日公布「交通運輸之未來」公眾諮詢文件(Future of Mobility-Call for Evidence),提及未來之交通運輸趨勢:

(1) 更加潔淨之交通運輸工具(cleaner transport):因電池價格下降、電動車技術之改善、開發替代燃料等因素,可減少現有交通工具之碳排放,並作為後續新技術研發基礎。英國政府已明確表示預計於2040年前讓新車及貨車實現零碳排目標。
(2) 自動化(automation):因感測器技術進步以及演算法和人工智慧之快速發展,使交通運輸自動化程度大幅提升。英國政府預計2021年可讓完全自動化駕駛車輛於道路行駛。
(3) 資料及聯結(data and connectivity):未來聯網車輛間可互聯,亦可與交通號誌互聯,透過即時路況告知,以避免道路壅塞。
(4) 新模式(new modes):英國已使用無人機於緊急服務或基礎設施勘查,未來可能有垂直起降之車輛出現,而計程車及公車之分別亦逐漸模糊。
(5) 交通運輸共享化(shared mobility):利用共享車輛可降低交通壅塞及廢氣排放,如公共自行車、商業化之車輛共乘。
(6) 不斷轉變的消費者態度(changing consumer attitudes):消費者已漸漸期待所有交通工具的預約叫車及支付,皆可透過手機進行,主管機關則應考量消費者需求,確保相關交通服務的利用。
(7) 新商業模型(new business models):未來交通運輸已有新商業模式出現,如公共運輸行動服務(Mobility as a Service)。

  英國政府期望透過上述交通運輸變革,能帶來更安全、便利及潔淨之交通,並實現更好的生活品質。

本文為「經濟部產業技術司科技專案成果」

※ 英國交通運輸部公布「交通運輸之未來」公眾諮詢文件, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8109&no=0&tp=1 (最後瀏覽日:2025/12/02)
引註此篇文章
你可能還會想看
以色列政府採購之創新實踐

員工分紅列費用之會計處理 金管會擬自民國97年起適用

  新修正商業會計法第 64 條規定,商業對業主分配之盈餘,不得作為費用或損失。但具負債性質之特別股,其股利應認列為費用。本條但書即是企業對於員工分紅應與以費用化之法源。配合此一新修正規定,金管會前已邀集業界及產業公會、四大會計師事務所與相關政府單位等,針對員工分紅費用化相關問題共同討論以研擬員工分紅費用化之相關會計處理及配套措施。 金管會及有關單位研討後決定, 在會計處理方面,企業應於期中報表依章程所訂之比率,預估員工分紅及董監酬勞金額入帳。期後董事會決議發放金額有重大變動時,該變動應調整當年度(原認列員工紅利之年度)之費用。至於次年度股東會決議若有變動,則依會計估計變動處理,列為次年度損益。 至於員工分紅配發股數之計算基礎以公平價值評價,上市上櫃公司應以股東會開會前一日之公平市價(考慮除權及除息之影響)計算股票紅利股數;興櫃公司及未上市上櫃之公開發行公司則應以股東會前最近期經會計師查核簽證之財務報告淨值計算股票紅利股數。企業發行員工認股權憑證及買回庫藏股轉讓予員工,應以公平價值法認列為費用。 以上決議將自 民國九十七年一月一日 起的財務報表開始適用。   由於員工分紅費用化,對一向以股票分紅作為獎勵員工的科技產業,可能造成不小的衝擊,因此,金管會也提出「員工認股權憑證制度」及「庫藏股票制度」的配套措施,並將修正「發行人募集與發行有價證券處理準則」與「上市上櫃公司買回本公司股份辦法」。金管會表示,有關本案規劃措施及實施日期,將由經濟部彙整各部會意見,提報行政院,相關措施將配合實施日程發布。

歐盟執委會發布人工智慧創新政策套案

歐盟執委會(European Commission)於2024年1月24日發布AI創新政策套案(AI innovation package),將提供全面性的激勵措施,協助AI新創公司、中小企業與歐盟AI技術之發展。AI創新政策套案預計將修訂〈歐盟高效運算聯合承諾〉(the European High Performance Computing Joint Undertaking),以創建AI工廠(AI factories);成立AI辦公室(AI Office);並建立歐盟AI新創與創新交流(EU AI startup and innovation communication),重點分述如下: (1)AI工廠:歐盟執委會在將2027年前透過〈歐盟高效運算聯合承諾〉投資80億歐元,在歐盟境內建設全新的超級電腦,或升級現有高效運算設備,實現高速機器學習(fast machine learning)與訓練大型通用AI模型(large general-purpose AI models),使AI新創公司有機會使用超級電腦與大型通用AI模型來開發各種AI應用。並且,AI工廠將坐落於大型資料存儲中心(large-scale data storage facility)周圍,讓AI模型於訓練時可取得大量可靠的資料。其次,AI工廠將藉由開放超級電腦來吸引大量人才,包含學生、研究員、科學家與新創業者,以培養歐盟高階AI人才,供未來歐盟持續發展可信任的AI(Trustworthy AI)。 (2)AI辦公室:該辦公室將設置於歐盟執委會內,用於確認與協調歐盟成員國AI政策的一致性。此外,該辦公室未來亦將用於監督即將通過之歐盟《AI法案》(AI Act)的執行成效。 (3)歐盟AI新創與創新交流:歐盟執委會將透過〈展望歐洲〉(Horizon Europe)與〈數位歐洲計畫〉(Digital Europe Programme),在2027年前投入40億歐元的公部門與私人投資,俾利歐盟開發生成式AI(Generative AI)模型。該政策套案亦將加速歐盟共同資料空間(Common European Data Spaces)之發展,使歐洲企業得取得可靠且具價值性之資料來訓練AI模型。最後,執委會將啟動歐盟〈生成式AI倡議〉(GenAI4EU initiative),將AI工廠所訓練之生成式AI應用於工業用與服務型機器人、醫療保健、生物科技與化學、材料與電池、製造與工程、車輛移動、氣候變遷與環境保護、網路安全、太空、農業等實際領域,刺激產業創新發展,改善人類生活。

歐盟公布行動健康(mHealth)公共諮詢報告

  歐盟在2014針對行動健康(mHealth)綠皮書進行公共諮詢,要求相關之人針對mHealth發展的十一個議題提出意見。進行的時間從2014年4月10日至7月10日,歐盟在2015年1月12日公布諮詢結果,總計有211位參與者回覆,其中71%由組織機構回覆,29%則為個人意見回覆。   在諮詢報告中所提列之十一項議題包含:1. 健康資料的安全性、2. 巨量資料、3. 於目前歐盟法規下的適用情況、4. 病人安全性與資訊透明化、5. mHealth在醫療照護系統的定位以及平等使用、6. 互通性、7. 補助機制、8. 責任歸屬、9. 研究與發展、10.國際合作、11. mHealth市場發展性等。   針對上述議題,諮詢報告提出幾項認為未來發展mHealth時面臨之問題以及應該如何因應。包含: 1. 多數認為應建立隱私安全保護工具,包括資料加密以及驗證機制。逾半數的人認為應該執行資料保護,將法規適用於mHealth相關器材。2. 近半數的人要求病人安全以及資料的透明性,因此,應可建立制度使這些mHealth APP經品質認證通過後上市。3. 對於mHealth的業者而言,認為需要有清楚的法規架構、互通性以及共通的品質標準建立,才能有助於產業的發展。4.透過立法、自律機制以及指導原則的建立,使mHealth APP所衍生之問題能有規範可供解決。5. 部分認為mHealth的成本效益需要有更多的數據證據分析來評估。例如,在美歐國家曾進行一項測試,mHealth可以減少50-60%肺部慢性疾病病人住院以及再次入院的比例。此外,mHealth亦可減少25%老人照護的成本支出。6. 歐盟以及各個國家應該確認mHealth的互通性,基於持續性的照護以及研究目的,能有共通可相互使用的電子醫療紀錄。7. 其次則是應該促使開放標準,並有醫療專家以及使用者積極參與使mHealth能完備進行。   在歐盟此的mHealth公共諮詢報告中,已提出未來可能面臨的問題,歐盟嘗試以既有之指令規範檢視mHealth衍生之問題是否能夠加以因應解決,其主要目的仍在於讓消費者能安全使用,同時亦希望能促進產業開發與進步,其後續發展值得觀察,同時亦可提供相關業者開發時之參考。

TOP