英國交通運輸部及聯網與自動駕駛車中心(Centre for Connected and Autonomous Vehicles, CCAV)於2018年7月30日公布「交通運輸之未來」公眾諮詢文件(Future of Mobility-Call for Evidence),提及未來之交通運輸趨勢:
(1) 更加潔淨之交通運輸工具(cleaner transport):因電池價格下降、電動車技術之改善、開發替代燃料等因素,可減少現有交通工具之碳排放,並作為後續新技術研發基礎。英國政府已明確表示預計於2040年前讓新車及貨車實現零碳排目標。
(2) 自動化(automation):因感測器技術進步以及演算法和人工智慧之快速發展,使交通運輸自動化程度大幅提升。英國政府預計2021年可讓完全自動化駕駛車輛於道路行駛。
(3) 資料及聯結(data and connectivity):未來聯網車輛間可互聯,亦可與交通號誌互聯,透過即時路況告知,以避免道路壅塞。
(4) 新模式(new modes):英國已使用無人機於緊急服務或基礎設施勘查,未來可能有垂直起降之車輛出現,而計程車及公車之分別亦逐漸模糊。
(5) 交通運輸共享化(shared mobility):利用共享車輛可降低交通壅塞及廢氣排放,如公共自行車、商業化之車輛共乘。
(6) 不斷轉變的消費者態度(changing consumer attitudes):消費者已漸漸期待所有交通工具的預約叫車及支付,皆可透過手機進行,主管機關則應考量消費者需求,確保相關交通服務的利用。
(7) 新商業模型(new business models):未來交通運輸已有新商業模式出現,如公共運輸行動服務(Mobility as a Service)。
英國政府期望透過上述交通運輸變革,能帶來更安全、便利及潔淨之交通,並實現更好的生活品質。
本文為「經濟部產業技術司科技專案成果」
依日本2017年5月30日修正施行之個人資料保護法的最新規定,家長會、同學會、管委會等,就個人資料的蒐集、處理、利用,應與以蒐集、處理、利用個人資料為業之公司行號,在法律上承擔相當之責任、義務。 因此自2017年5月30日起,家長會蒐集、處理、利用個人資料,需要注意以下四點: 一、經當事人請求,應刪除其個人資料。 修正後的個人資料保護法施行後,明知未經或不確定是否經學生監護人同意,而取得其個人資料,都是違法的行為。但目前已經取得的個人資料,即使明知未經或不確定是否經學生監護人同意,也不需要立即刪除。惟若當事人請求刪除,則必須立即刪除。 二、學校應善盡告知之義務,取得學生監護人之同意後,方得將其個人資料轉交家長會蒐集、利用、處理,。 修正後的個人資料保護法允許由學校取得學生監護人之同意後,將其個人資料轉交家長會蒐集、利用、處理。但如果校方未充分盡到告知義務,則有違法之虞。實務上在九州的熊本曾經發生過這樣的案例,由於家長會未依法蒐集、處理、利用其個人資料,監護人提起告訴,最後雙方在二審達成和解。 三、經過監護人同意,方得將其個人資料造冊並刊登照片 由於須明確取得學生監護人之同意,方得將其個人資料造冊並刊登照片。因此為避免學校未善盡告知義務,建議家長會直接請監護人填妥加入家長會之同意書,並於同意書上載明授權蒐集、處理、利用其個人資料之範圍。 四、遵從個人情報保護委員會的指導 若家長會有非法蒐集、利用、處理個人資料之虞,個人情報保護委員會可以檢查並限期改正。屆期如未改正,可裁處罰金或懲役。
何謂「商標名稱通用化」?商標具有表彰商品來源之功能,其設計為配合商品特色而具有識別性。商標註冊後,若不具有識別及表彰商品來源之特徵,而失去商標應有之基本功能,依據商標法第63條第4款,不具識別性之商標,無法主張商標專用之權利。商標名稱通用化,即是指原本具有識別性之商標,通常為著名商標,因為社會大眾消費習慣以及認知的改變,變成商品的通用名稱,此時即認該商標失去識別性,失去法律保護。 商標名稱通用化形成之原因不一,可能是企業經營者設計商標時,有意使用社會大眾熟悉之名稱作為商標,也有可能非商標權利人自己故意造成,特別是著名商標,容易流於通用化。例如,「可樂(cola)」一詞由可口可樂(coca cola)公司率先註冊使用,但於消費者心目中已成為特定碳酸飲料之名稱,則不得由可口可樂公司獨占使用;又如火柴盒玩具汽車,為火柴盒大小包裝之玩具,企業經營者以 matchbox 作為該玩具的文字商標,但美國聯邦最高法院認為matchbox屬於該商品之通用名稱,否認其商標權。 實務上判斷商標名稱通用化,以該商標名稱在一般消費者心目中認識的主要意義為標準。一個經過市場行銷之註冊商標名稱,若在消費者心目中屬於商品通用名稱,而非特定商品來源,則表示該商標名稱已不具備商標功能,不受法律保護。
衛生署將推動中草藥於兩年內強制包裝標示為強化中草藥現代化,保障民眾用藥安全,行政院衛生署自民國 93 年起提出「建構中藥用藥安全環境五年計畫」,中醫藥委員會主委林宜信最近並表示,將在 2008 年前,強制全台所有飲片及傳統藥材做好符合規定的包裝及標示,標示內容包括檢驗文號、有效期限,包裝後則需符合 GMP 的規範;至於規範標準,預計會在 2008 年起推動,初期採取廠商自由心證的做法,但未來會改為強制執行。 國內中草藥可區分為科學濃縮製劑,以及傳統的飲片和傳統劑型,科學濃縮製劑透過中醫醫療院所流通,目前產值約 250 億元;一般藥店販售的飲片及傳統劑型,產值則有 300 億元以上。傳統中草藥做好包裝標示,可確保民眾用藥安全,並帶動傳統中草藥品牌加值,而要求包裝標示符合 GMO 規範,也有利進入國際市場。中醫藥委員會預估,中草藥強制包裝標示可提升中草藥產值,由 300 億元倍數成長到 1,000 億元以上的規模。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。