2018年5月18日,於第196次參議院會議中通過「著作權法」修正案,並於5月25日公布,預計於2019年1月1日施行。本次修正是為因應數位網路技術的發展,對需要著作權人同意的行為範圍進行檢視。其中第47條之7修正、及新增之第30條之4與第47條之5與人工智慧發展有重大相關。
日本著作權法於2009年的修正中,增加第47條之7規定,原本可能構成著作權侵害之資料分析、機器學習行為(未經原作者同意複製、改作),只要在必要限度內,不分是否有營利,皆無須權利人同意。然而本條在使用上因為未涵蓋成果物的讓與行為,也就是如果公開販售學習完成的資料集或是人工智慧模型,甚至於同一平台共享資料集都可以構成侵害。有鑑於此,才在本次修法中修正相關條文。
本次修正中,增加第30條之4規範於必要限度內可利用他人著作物的行為,其中在同條第二款中認可第47條之5第1項第2款之行為,也就是「利用電子計算機的情報解析及提供其結果」,亦可被認為不違反著作權法,因而補上原本第47條之7的漏洞。
惟須注意的是,所謂的必要限度還是有嚴格的比例限制,不能無限制使用。由於目前本次修正還尚未生效,未來對人工智慧發展的應用會產生什麼樣的實際影響,值得繼續觀察。
法國國家資訊自由委員會(CNIL)於2023年10月16日至11月16日進行「人工智慧操作指引」(AI how-to sheets)(下稱本指引)公眾諮詢,並宣布將於2024年初提出正式版本。本指引主要說明AI系統資料集建立與利用符合歐盟一般資料保護規則(GDPR)之作法,以期在支持人工智慧專業人士創新之外,同時能兼顧民眾權利。 人工智慧操作指引主要內容整理如下: 1.指引涵蓋範圍:本指引限於AI開發階段(development phase),不包含應用階段(deployment phase)。開發階段進一步可分為三階段,包括AI系統設計、資料蒐集與資料庫建立,以及AI系統學習與訓練。 2.法律適用:當資料處理過程中包含個人資料時,人工智慧系統的開發與設計都必須確定其適用的法律規範為何。 3.定義利用目的:CNIL強調蒐集及處理個資時應該遵守「明確」、「合法」、「易懂」之原則,由於資料應該是基於特定且合法的目的而蒐集的,因此不得以與最初目的不相符的方式進一步處理資料。故明確界定人工智慧系統之目的為何,方能決定GDPR與其他原則之適用。 4.系統提供者的身分:可能會是GDPR中的為資料控管者(data controller)、共同控管者(joint controller)以及資料處理者(data processor)。 5.確保資料處理之合法性:建立AI系統的組織使用的資料集若包含個人資料,必須確保資料分析與處理操作符合GDPR規定。 6.必要時進行資料保護影響評估(DIPA)。 7.在系統設計時將資料保護納入考慮:包含建立系統主要目標、技術架構、識別資料來源與嚴格篩選使用…等等。 8.資料蒐集與管理時皆須考慮資料保護:具體作法包含資料蒐集須符合GDPR、糾正錯誤、解決缺失值、整合個資保護措施、監控所蒐集之資料、蒐集之目的,以及設定明確的資料保留期限,實施適當的技術和組織措施以確保資料安全等。 對於AI相關產業從事人員來說,更新AI相關規範知識非常重要,CNIL的人工智慧操作指引將可協助增強AI產業對於個資處理複雜法律問題的理解。
美國專利商標局發布「發明AI」分析報告,由美國專利申請趨勢分析AI技術普及情形美國專利商標局(USPTO)於2020年10月27日發布「發明AI:由美國專利觀察AI普及情形」(Inventing AI: Tracing the diffusion of artificial intelligence with U.S. patents)智財資料分析報告,本報告分析2002年至2018年共16年間美國AI專利之申請資料,發現在AI專利申請數量由3萬件成長至6萬件,成長幅度為100%,而在全體專利當中AI相關專利所占比率,也由原本的9%成長至接近16%,顯示在AI技術研發創新與普及率的顯著成長。 報告指出,自1950年圖靈(Alan Turing)提出「機器能否思考?」問題以來,現今AI技術的發展已經達到連圖靈也會讚嘆的水準,AI技術在發明領域的重要性益發提升,活躍於AI領域的發明人占全體專利權人的比率也從1976年的1%提升到2018年的25%,在組織的發明專利上也呈現相同的趨勢;除了美國銀行(Bank of America)、波音公司(Boeing)以及奇異電子(General Electric)之外,前30大頂尖的AI公司都來自資通訊領域,其中佔據首位者為擁有46,752項專利的IBM,其次為擁有22,076項專利的微軟以及10,928項專利的Google,而AI技術的應用領域也更加多元,並且與在地產業做結合,例如應用在奧勒岡州的健身訓練與設備以及北達科他州的農業上。 USPTO指出,經由專利資料分析顯示AI技術的發展不僅有顯著的成長,並逐漸與在地產業結合、落實在不同產業領域的多元應用,AI對於產業的影響力將不亞於電力或半導體,隨著AI領域發明人的顯著成長,未來將有更多AI技術在各領域的應用出現,而擴大AI影響力的關鍵在於發明者與公司能否成功將AI納入現有或新產品的功能、流程或服務之中。
歐盟執委會發起ERA vs CORONA行動計畫,加速研發創新合作對抗COVID-19歐盟執委會於2020年4月7日發起ERA vs CORONA行動計畫,透過歐洲研究區(European Research Area, ERA)全力支持歐洲科研合作、共享科學資訊,並給予歐洲研究團隊與企業充足的研發疫苗資金,用以對抗COVID-19。歐盟執委會已與各國達成共識,確認ERA vs CORONA行動計畫的10項優先行動: 協調各國研究與創新(Research and innovation, R&I)資金投入,專注研發新型冠狀病毒的疫苗與治療方法,加強創新合作模式以對抗疫情。 支持新型冠狀病毒患者的臨床管理,與歐盟大規模臨床實驗計畫。 將資金投入創新領域回應社會需求,關注疫情對社會經濟、醫療及資通訊技術應用、衛生系統及製造業的影響。 藉由Horizon 2020 增加對新創公司的研發財務支持;拓展歐洲創新委員會ePitching計畫(EIC ePitching),鼓勵公私夥伴共同尋求解決方案。 創造資金來源促進R&I行動,引導新創及中小企業申請國家及地方資金、私人基金會、投資歐洲計畫(Invest EU)等。 建立ERA Corona平台,提供研發資金相關的一站式服務,包括歐盟各國補助新型冠狀病毒R&I計畫的完整資訊。 設立新型冠狀病毒特設高階R&I工作小組,規劃歐盟中長期防疫措施。 加強研究基礎設施布建及跨國資料庫利用。 創建歐洲COVID-19研究資料共享平台 ,連接歐洲開放科學雲,允許快速共享研究資料及成果以加速研發、公平分享資訊。 舉辦泛歐黑客松(EU vs Virus)推動歐洲創新與社會交流。
何謂「LAB- FAB - APP- Investing in the European future we want」?歐盟執委會研究創新總署之高級專家小組(High Level Group)2017年7月3日提交名為《研究、生產、應用—投資於我們所期待的歐洲未來》(LAB- FAB - APP- Investing in the European future we want)報告,呼籲歐盟及成員國大幅增加對研發創新的投入。該報告認為過去20年,工業化國家2/3的經濟增長歸功於研發創新。歐洲必須妥善利用大量知識,將創新潛力轉化為現實的經濟增長,從而促進歐洲繁榮,解決社會挑戰。該報告提出11項建議:(1)將歐盟及成員國的預算優先考慮投入研發創新,將下一個歐盟研發創新計畫的預算提高一倍;(2)建立可創造未來市場的歐盟創新政策;(3)投入未來教育培訓,投資創新人才;(4)編制能夠發揮更大影響力的歐盟研發創新計畫,堅持目標、完善評估系統以增加計畫靈活度;(5)採取任務導向、焦點式措施應對全球挑戰;(6)使歐盟資金分配更加合理,實現與歐盟結構性基金的協同效應;(7)進一步簡化計畫管理模式,更注重效果而不是過程;(8)激勵公眾參與創新;(9)更好地促進歐盟及成員國的研發創新投資合作;(10)使國際合作成為歐盟研發創新的特徵,通過共同資助等方式,開放歐盟研發創新計畫;(11)將歐盟研發創新品牌化,擴大研究創新成果及作用。