日本總務省及經濟產業省於2017年11月至2018年4月間召開6次「資料信託功能認定流程檢討會」(情報信託機能の認定スキームの在り方に関する検討会),檢討具備資料信託功能之「資料銀行」認定基準及模範條款等事項,於2018年6月公布「資料信託功能認定指引ver1.0」(情報信託機能の認定に係る指針ver1.0),以利實現個人資料流通並創造新服務型態。資料銀行係指基於與個人間資料利用契約,透過PDS(personal data store)等系統管理個人資料,根據個人指示或預先設定的條件,於判斷妥當性後向第三方提供資料之行業。目前指引內容包括︰(1)資料信託機能認定基準︰具體內容包括業者適格性、資訊安全原則、資訊安全具體基準、治理體制、業務內容等;(2)模範條款記載事項︰針對個人與資料銀行、資料銀行與資料提供者、資料銀行與接受資料提供者間關係,列出具體應記載事項;(3)資料信託機能認定流程。
作為日本總務省「資料信託功能運用推動計畫」(情報信託機能活用促進事業)一環,日立製作所、東京海上日動火災保險、日本郵局等於2018年9月10日發表將根據「資料信託功能認定指引ver1.0」,進行「資料銀行」個資管理、提供及運用等實驗,參與者分別扮演資料提供者、資料銀行和資料利用者三種角色,未來將會參考實驗結果,提出認定基準改善建議。
本文為「經濟部產業技術司科技專案成果」
2008年9月26日美國國會通過「智慧財產資源及機構優先法案」(the Prioritizing Resources and Organization for Intellectual Property Act, PRO-IP Act),該法案的內容將加強跨單位合作與國際間打擊仿冒、盜版之動作,例如增加主管機關可沒收或扣押侵害著作權相關物品的權力等,以遏止日益增加之侵權案件。 在10月13日的時候,美國總統布希終於簽署PRO-IP法案。其中特別的是,該法案增設一個行政部門:「智慧財產執行協調官」(Intellectual Property Enforcement Coordinator, IPEC),IPEC可掌控與管理美國境內各行政機關之智慧財產保護措施,並直接向總統報告。一般預料布希總統雖簽署該法案,但應該不會在其任內發布任何命令,而會將IPEC之人事任命權留給下一任總統。 許多人對PRO-IP法案的通過仍存有疑慮,例如:設立IPEC的功能不明,且有疊床架屋之嫌。但美國唱片業協會(RIAA)卻十分支持該法案,其認為有助於保護美國的智慧財產,RIAA引用最近的調查報告指出,全球智慧財產仿冒、盜版等行為讓美國一年損失580億美元及37萬份以上的工作機會,並讓美國勞工損失160億美元的收入,故RIAA認為通過該法案可以減緩此一損害。
歐盟執委會通過關於《人工智慧責任指令》之立法提案歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。 《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。 歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。
英國通過《資料(使用與存取)法》,提升資料使用的便利性2025年6月19日,英國《2025年資料(使用與存取)法》(Data(Use and Access)Act 2025,下簡稱DUA法)正式生效。DUA法的宗旨是在《英國一般資料保護規則》(United Kingdom General Data Protection Regulation, UK GDPR)的基礎上,放寬在特定情形下執法機關、企業與個人使用資料的限制,以提升資料管理及使用的便利性。 DUA法預計將於2025年8月開始分階段實施,重點如下: (1) 放寬自動化決策(Automated Decision-Making, ADM)條件:依據UK GDPR規定,個人有不受純粹基於自動化處理且產生法律效果或類似重大影響之決策所拘束之權利。此項規範確立自動化決策之原則性禁止,僅於符合特定例外事由時始得為之。DUA法則放寬此一限制,未來企業只要確保有向當事人提供自動化決策的資訊、決策結果申訴的管道,以及得人為干預設計之保障措施以後,即可做出對個人有重大影響的自動化決策。 (2) 資料主體存取請求權(Subject Access Request, SAR)規範明確化:當事人有權向持有自身個資的單位請求查閱,DUA法明訂組織在收到請求後應回應的時間,而當事人請求的範圍也應合理且合於比例,避免組織浪費人力搜索不重要的資訊。 (3) 建立有效申訴管道:規定任何使用個人資料的組織都必須設立有效的申訴機制、提供電子化申訴管道、並回報處理結果,若訴求未獲得解決,當事人即可向英國資訊專員辦公室(Information Commissioner’s Office, ICO)提出申訴。 (4) 科學研究得採概括同意機制,商業研究亦屬適用範疇:DUA法明確指出,基於科學研究目的,研究人員於確保適當個人資料保護措施之前提下,得以概括同意(broad consent)方式取得當事人之同意,以利進行科學研究活動。DUA法並明確界定科學研究之範疇可涵蓋商業研究(commercial research),擴大其適用領域。 (5) 允許網站直接使用Cookie:網站與應用程式的儲存與存取技術(Storage and Access Technologies)在低風險情況下,可不取得使用者事前同意,即紀錄使用者瀏覽紀錄。 DUA法將於2025年8月開始分階段實施。如何在科技發展的便利性與個人資料的安全性間取得平衡,是當代社會不容忽視的議題,可持續觀察追蹤英國施行DUA法的成效供我國參考。
英國期望透過資料使用與近用法案修正案,強化數位證據資料之可信任性英國於2024年11月提出資料使用與近用法案(Data (Use and Access) Bill)修正案,其修正內容包含強化數位證據資料之可信任性。 根據英國數十年來的法院判決,可以觀察到英國法院信任電腦自動產出的資料,因此除非當事人提出反證,否則將推定電腦證據是可信賴的。然而,該見解導致英國爭議案件「郵局Horizon系統出錯案」的發生,亦促使資料使用與近用法案修正案的提出。 資料使用與近用法案修正案於第132條新增與數位證據相關的條款,同條第1項規定由電腦、裝置或電腦系統產生的數位證據,符合下列規定者,於訴訟程序中可以作為證據。 a、 數位證據以及產生數位證據或衍生數位證據之系統之可信任性未受質疑。 b、 法院確信無法合理地挑戰系統之可信任性。 c、 法院確信數位證據源自可信任的系統。 此外,同條第4項規定第1項第c款所指之可信任的系統,應包括適用於系統運作的任何指示或規則,以及為確保系統中保存的資料的完整性而採取的任何措施。 綜上所述,英國逐漸扭轉過去英國法院認為由電腦自動產生的資料具有可信任性之見解,並透過資料使用與近用法案修正案修正對於數位證據的認定,未來在涉及數位證據的案件中,檢辯雙方需要證明作為數位證據的資料完整性具有可信任性。 我國企業如欲強化數位資料的可信任性,可參考資訊工業策進會科技法律研究所創意智財中心所發布之重要數位資料治理暨管理制度規範(EDGS),建立並落實數位資料管理流程,除可確保數位資料的完整性及正確性具有可信任性,亦可提升法院採納數位資料作為證據之可能性。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}