三螺旋理論,又稱三螺旋創新模型理論(Triple Helix Theory),主要研究大學、產業以及政府以知識經濟為背景之創新系統中之型態關係,由Etzknowitz與Leydesdorff於1995年首次提出。
因應知識經濟時代來臨,三螺旋理論著重於政府、學術界與產業界(即為產、官、學)三者在創新過程中互動關係的強化。該理論探討如何協調產業、政府、學界三方於知識運用和研發成果產出上的合作;當社會動態產生改變,過去單一強大的領域將不足以帶動創新活動,推動創新也非單一方的責任,此時產業、政府、學界的三螺旋互動便隨之發生:大學透過創新育成機構孕育企業創新,而產業則扮演將研發成果商業化之要角,政府則透過研發相關政策、計畫或法規制定,鼓勵企業和大學間研究發展合作。
有別於早期經濟合作暨發展組織(OECD)將「產業」作為主要研發創新主體,三螺旋理論更重視產業、政府、學界三大主體均衡發展,三方主體各自獨立發展,且同時與其他方維持相互協力合作,共同推進經濟與社會之創新發展。
在三螺旋理論下,產、官、學因其強弱不等的互動狀態,形成不同的動態模型(例如國家干預模型、自由放任模型、平衡配置模型等等),這些動態模型被認為是產生創新的主要動力來源,對未來新知識和科技創造與擴散的能力以及績效具有決定性的影響力。
本文為「經濟部產業技術司科技專案成果」
日本獨立行政法人情報處理推進機構於2024年7月4日發布利用AI時的安全威脅、風險調查報告書。 隨著生成式AI的登場,日常生活以及執行業務上,利用AI的機會逐漸增加。另一方面,濫用或誤用AI等行為,可能造成網路攻擊、意外事件與資料外洩事件的發生。然而,利用AI時可能的潛在威脅或風險,尚未有充分的對應與討論。 本調查將AI區分為分辨式AI與生成式AI兩種類型,並對任職於企業、組織中的職員實施問卷調查,以掌握企業、組織於利用兩種類型之AI時,對於資料外洩風險的實際考量,並彙整如下: 1、已導入AI服務或預計導入AI服務的受調查者中,有61%的受調查者認為利用分辨式AI時,可能會導致營業秘密等資料外洩。顯示企業、組織已意識到利用分辨式AI可能帶來的資料外洩風險。 2、已導入AI利用或預計導入AI利用的受調查者中,有57%的受調查者認為錯誤利用生成式AI,或誤將資料輸入生成式AI中,有導致資料外洩之可能性。顯示企業、組織已意識到利用生成式AI可能造成之資料外洩風險。 日本調查報告顯示,在已導入AI利用或預計導入AI利用的受調查者中,過半數的受調查者已意識到兩種類型的AI可能造成的資料外洩風險。已導入AI服務,或未來預計導入AI服務之我國企業,如欲強化AI資料的可追溯性、透明性及可驗證性,可參考資策會科法所創意智財中心所發布之重要數位資料治理暨管理制度規範;如欲避免使用AI時導致營業秘密資料外洩,則可參考資策會科法所創意智財中心所發布之營業秘密保護管理規範,以降低AI利用可能導致之營業秘密資料外洩風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢 資訊工業策進會科技法律研究所 2025年03月10日 七大工業國組織(Group of Seven,下稱G7)於2024年10月10日至11日在義大利羅馬舉辦第四屆資料保護與隱私機構圓桌會議(Data Protection and Privacy Authorities Roundtable,下稱圓桌會議),並發布「G7 DPAs公報:資料時代的隱私」(G7 DPAs’ Communiqué: Privacy in the age of data,下稱公報)[1],特別聚焦於人工智慧(AI)技術對隱私與資料保護的影響。 壹、緣起 由美國、德國、英國、法國、義大利、加拿大與日本的隱私主管機關(Data Protection and Privacy Authorities, DPAs)組成本次圓桌會議,針對數位社會中資料保護與隱私相關議題進行討論,涵蓋「基於信任的資料自由流通」(Data Free Flow with Trust, DFFT)、新興技術(Emerging technologies)、跨境執法合作(Enforcement cooperation)等三大議題。 本次公報重申,在資通訊技術主導的社會發展背景下,應以高標準來審視資料隱私,從而保障個人權益。而DPAs作為AI治理領域的關鍵角色,應確保AI技術的開發和應用既有效且負責任,同時在促進大眾對於涉及隱私與資料保護的AI技術認識與理解方面發揮重要作用[2]。此外,公報亦強調DPAs與歐盟理事會(Council of Europe, CoE)、經濟合作暨發展組織(Organisation for Economic Co-operation and Development, OECD)、亞太隱私機構(Asia Pacific Privacy Authorities, APPA)、全球隱私執行網路(Global Privacy Enforcement Network, GPEN)及全球隱私大會(Global Privacy Assembly, GPA)等國際論壇合作的重要性,並期望在推動資料保護與建立可信賴的AI技術方面作出貢獻[3]。 貳、重點說明 基於上述公報意旨,本次圓桌會議上通過《關於促進可信賴AI的資料保護機構角色的聲明》(Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI)[4]、《關於AI與兒童的聲明》(Statement on AI and Children)[5]、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》(Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions)[6],分別說明重點如下: 一、《關於促進可信賴AI的資料保護機構角色的聲明》 繼2023年第三屆圓桌會議通過《關於生成式AI聲明》(Statement on Generative AI)[7]後,本次圓桌會議再次通過《關於促進可信賴AI的資料保護機構角色的聲明》,旨在確立管理AI技術對資料保護與隱私風險的基本原則。G7 DPAs強調許多AI技術依賴個人資料的運用,這可能引發對個人偏見及歧視、不公平等問題。此外,本聲明中還表達了擔憂對這些問題可能透過深度偽造(Deepfake)技術及假訊息擴散,進一步對社會造成更廣泛的不良影響[8]。 基於上述考量,本聲明提出以下原則,納入G7 DPAs組織管理的核心方針[9]: 1. 以人為本的方法:G7 DPAs應透過資料保護來維護個人權利與自由,並在AI技術中提供以人權為核心的觀點。 2. 現有原則的適用:G7 DPAs應審視公平性、問責性、透明性和安全性等AI治理的核心原則,並確保其適用於AI相關框架。 3. AI核心要素的監督:G7 DPAs應從專業視角出發,監督AI的開發與運作,確保其符合負責任的標準,並有效保護個人資料。 4. 問題根源的因應:G7 DPAs應在AI的開發階段(上游)和應用階段(下游)找出問題,並在問題擴大影響前採取適當措施加以解決。 5. 善用經驗:G7 DPAs應充分利用其在資料領域的豐富經驗,謹慎且有效地應對AI相關挑戰。 二、《關於AI與兒童的聲明》 鑒於AI技術發展可能對於兒童和青少年產生重大影響,G7 DPAs發布本聲明表示,由於兒童和青少年的發展階段及其對於數位隱私的瞭解、生活經驗有限,DPAs應密切監控AI對兒童和青少年的資料保護、隱私權及自由可能造成的影響程度,並透過執法、制定適合年齡的設計實務守則,以及發佈面向兒童和青少年隱私權保護實務指南,以避免AI技術導致潛在侵害兒童和青少年隱私的行為[10]。 本聲明進一步闡述,當前及潛在侵害的風險包含[11]: 1. 基於AI的決策(AI-based decision making):因AI運用透明度不足,可能使兒童及其照顧者無法獲得充足資訊,以瞭解其可能造成重大影響的決策。 2. 操縱與欺騙(Manipulation and deception):AI工具可能具有操縱性、欺騙性或能夠危害使用者情緒狀態,促使個人採取可能危害自身利益的行動。例如導入AI的玩具可能使兒童難以分辨或質疑。 3. AI模型的訓練(Training of AI models):蒐集和使用兒童個人資料來訓練AI模型,包括從公開來源爬取或透過連線裝置擷取資料,可能對兒童的隱私權造成嚴重侵害。 三、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》 考慮到個人資料匿名化、假名化及去識別化能促進資料的創新利用,有助於最大限度地減少隱私風險,本文件旨在整合G7成員國對於匿名化、假名化與去識別化的一致理解,針對必須降低可識別性的程度、資訊可用於識別個人的程度、減少可識別性的規定流程及技術、所產生的資訊是否被視為個人資料等要件進行整理,總結如下: 1. 去識別化(De-identification):加拿大擬議《消費者隱私保護法》(Consumer Privacy Protection Act, CPPA)、英國《2018年資料保護法》(Data Protection Act 2018, DPA)及美國《健康保險可攜性及責任法》(Health Insurance Portability and Accountability Act , HIPAA)均有去識別化相關規範。關於降低可識別性的程度,加拿大CPPA、英國DPA規定去識別化資料必須達到無法直接識別特定個人的程度;美國HIPAA則規定去識別化資料須達到無法直接或間接識別特定個人的程度。再者,關於資料去識別化的定性,加拿大CPPA、英國DPA認定去識別化資料仍被視為個人資料,然而美國HIPAA則認定去識別化資料不屬於個人資料範疇。由此可見,各國對去識別化規定仍存在顯著差異[12]。 2. 假名化(Pseudonymization):歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)及英國《一般資料保護規則》(UK GDPR)、日本《個人資料保護法》(個人情報の保護に関する法律)均有假名化相關規範。關於降低可識別性的程度,均要求假名化資料在不使用額外資訊的情況下,須達到無法直接識別特定個人的程度,但額外資訊應與假名化資料分開存放,並採取相應技術與組織措施,以確保無法重新識別特定個人,因此假名化資料仍被視為個人資料。而關於假名化程序,日本個資法明定應刪除或替換個人資料中可識別描述或符號,歐盟及英國GDPR雖未明定具體程序,但通常被認為採用類似程序[13]。 3. 匿名化(Anonymization):歐盟及英國GDPR、日本個資法及加拿大CPPA均有匿名化相關規範。關於降低可識別性的程度,均要求匿名化資料無法直接或間接識別特定個人,惟可識別性的門檻存在些微差異,如歐盟及英國GDPR要求考慮控管者或其他人「合理可能用於」識別個人的所有方式;日本個資法則規定匿名化資料之處理過程必須符合法規標準且不可逆轉。再者,上述法規均將匿名化資料視為非屬於個人資料,但仍禁止用於重新識別特定個人[14]。 參、事件評析 本次圓桌會議上發布《關於促進可信賴AI的資料保護機構角色的聲明》、《關於AI與兒童的聲明》,彰顯G7 DPAs在推動AI治理原則方面的企圖,強調在AI技術蓬勃發展的背景下,隱私保護與兒童權益應成為優先關注的議題。與此同時,我國在2024年7月15日預告《人工智慧基本法》草案,展現對AI治理的高度重視,融合美國鼓勵創新、歐盟保障人權的思維,針對AI技術的應用提出永續發展、人類自主、隱私保護、資訊安全、透明可解釋、公平不歧視、問責等七項原則,為國內AI產業與應用發展奠定穩固基礎。 此外,本次圓桌會議所發布《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》,揭示各國在降低可識別性相關用語定義及其在資料保護與隱私框架中的定位存在差異。隨著降低可識別性的方法與技術不斷創新,這一領域的監管挑戰日益突顯,也為跨境資料流動越發頻繁的國際環境提供了深化協調合作的契機。在全球日益關注資料保護與隱私的趨勢下,我國個人資料保護委員會籌備處於2024年12月20日公告《個人資料保護法》修正草案,要求民間業者設置個人資料保護長及稽核人員、強化事故通報義務,並針對高風險行業優先實施行政檢查等規定,以提升我國在數位時代的個資保護水準。 最後,本次圓桌會議尚訂定《2024/2025年行動計畫》(G7 Data Protection and Privacy Authorities’ Action Plan)[15],圍繞DFFT、新興技術與跨境執法合作三大議題,並持續推動相關工作。然而,該行動計畫更接近於一項「基於共識的宣言」,主要呼籲各國及相關機構持續努力,而非設定具有強制力或明確期限的成果目標。G7 DPAs如何應對數位社會中的資料隱私挑戰,並建立更順暢且可信的國際資料流通機制,將成為未來關注的焦點。在全球共同面臨AI快速發展所帶來的機遇與挑戰之際,我國更應持續關注國際趨勢,結合自身需求制訂相關法規以完善相關法制,並積極推動國際合作以確保國內產業發展銜接國際標準。 [1]Office of the Privacy Commissioner of Canada [OPC], G7 DPAs’ Communiqué: Privacy in the age of data (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/communique-g7_241011/ (last visited Feb 3, 2025). [2]Id. at para. 5. [3]Id. at para. 7-9. [4]Office of the Privacy Commissioner of Canada [OPC], Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_ai/ (last visited Feb 3, 2025). [5]Office of the Privacy Commissioner of Canada [OPC], Statement on AI and Children (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_child-ai/ (last visited Feb 3, 2025). [6]Office of the Privacy Commissioner of Canada [OPC], Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/de-id_20241011/ (last visited Feb 3, 2025). [7]Office of the Privacy Commissioner of Canada [OPC], Statement on Generative AI (2023), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2023/s-d_20230621_g7/ (last visited Feb 3, 2025). [8]Supra note 4, at para. 11. [9]Supra note 4, at para. 18. [10]Supra note 5, at para. 5-6. [11]Supra note 5, at para. 7. [12]Supra note 6, at para. 11-15. [13]Supra note 6, at para. 16-19. [14]Supra note 6, at para. 20-25. [15]Office of the Privacy Commissioner of Canada [OPC], G7 Data Protection and Privacy Authorities’ Action Plan (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/ap-g7_241011/ (last visited Feb 3, 2025).
美國發表網路安全框架2014年2月12日,美國發表「網路安全框架(Cybersecurity Framework)」,該框架係由美國政府、企業及民間機構花費一年的時間共同發展而成,其蒐集了全球現有的標準、指引與最佳實務作法,最後由國家標準技術局(National Institute of Standard and Technology, NIST)彙整後所提出。 本框架主要可分成三大部份: 1.框架核心(Framework Core) 框架核心包括辨識(Identify)、保護( Protect)、偵測( Detect)、應變( Respond)、與復原( Recover)等五項功能。這五項功能組成網路安全管理的生命週期,藉由這五項功能的要求項目與參考資訊的搭配運用,可使組織順利進行網路安全管理。 2. 框架實作等級(Framework Implementation Tiers) 共分成局部(Partial)、風險知悉(Risk Informed)、可重複實施(Repeatable)、合適(Adaptive)四個等級。組織可以透過對風險管理流程、整合風險管理計畫以及外部參與等三個面向的觀察,瞭解組織目前的安全防護等級。 3. 框架側寫(Framework Profile) 框架側寫係組織依照本框架實際操作後所產出的結果,可以協助組織依據其企業需求、風險容忍度,決定資源配置的優先順序,進一步調整其網路安全活動。 此一安全框架旨在提供整體規劃藍圖予尚未建立網路安全架構的組織參考,而針對已有建立網路安全架構者,該框架並未意圖取代組織原先的風險管理程序和網路安全計畫,而係希望協助公、私部門改善資通訊科技和工業控制系統風險管理的能力。
日本經產省與環境省共同發布《促進循環經濟與永續金融之揭露及對話指導》日本經產省與環境省共同發布《促進循環經濟與永續金融之揭露及對話指導》 資訊工業策進會科技法律研究所 2021年06月10日 壹、背景目的 伴隨全球人口增加,除了提高資源需求,亦造成大量廢棄物產生,導致氣候變化等環境問題日益嚴重,為從過去大量生產、大量消費、大量廢棄的線性經濟轉型為循環經濟,日本經濟產業省(下稱經產省)與環境省於2021年1月19日共同公布「促進循環經濟與永續金融之揭露及對話指導[1]」(サーキュラー・エコノミーに係るサステナブル・ファイナンス促進のための開示・対話ガイダンス)。該指導旨在促進企業與投資者、金融機構之間在資源循環領域順利進行對話,期能通過企業適當地揭露資訊,推展企業技術及商業模式創新,共同創造價值達成永續企業與永續社會的轉型。 貳、事件摘要 「促進循環經濟與永續金融之揭露及對話指導」參考「環境社會治理」(Environmental, Social, Governance,簡稱ESG)公開框架及「氣候相關財務揭露建議書」(Task Force on Climate-related Financial Disclosures,TCFD)[2],主要著眼於六項重點,除了ESG公開框架與循環經濟特徵共通的「風險與機會」、「策略」、「指標與目標」以及「治理」四者之外,再併入屬於企業經營方針的「價值觀」、「商業模式」兩者。根據上述六項重點,分為三個階層說明彼此關係:(1)首先在「上位方針」階層,「價值觀」作為統合企業實行循環經濟措施的理念與願景,為判斷企業的執行力及實現商業模式可能性的重要因素;而「商業模式」是指企業應分析目前市場環境與未來中長期動向,以及企業採取循環經濟措施對於其在市場地位的競爭優勢,並說明其商業模式所產生的附加價值及確保競爭優勢的差別化因素,使投資者得以適當評價企業進行投資判斷。(2)其次在「實行」階層,「風險與機會」主要包含政策法規、技術、市場及評價四個面向,企業應整理有關依賴線性經濟可能的風險與對財務潛在的影響,以及向循環經濟轉型的機會;並設定相對應的「指標與目標」,檢視商業模式與策略執行的狀況。(3)最後在「PDCA」階層,企業制定「策略」,以確保、強化支撐其商業模式競爭優勢的經營資源、無形資產等;並透過企業規律的「治理」運作,包括企業經營層與董事會積極參與過程,藉由PDCA方法論衡量策略達成情形,並重新進行評估審視[3]。 另一方面,循環經濟涵蓋多種類型,主體主要有(1)本身事業活動採取循環經濟措施的「採用者」(Adopters);抑或(2)通過提供技術、解決方案以提高社會整體循環性的「推動者」(Enablers)。具體而言,即分為企業在本身事業活動中採用循環經濟措施,或是通過提供技術、解決方案對循環經濟措施做出貢獻,並有助於提高社會整體循環性的兩種方式。而循環經濟採取之措施則主要有(1)減量(Reduce),有助於節約資源、抑制廢棄物產生的措施;(2)再使用(Reuse),有助於產品長期使用、有效利用的措施;(3)再循環(Recycle),有助於資源循環利用、再生利用的措施;(4)可再生(Renewable),有助於可再生資源利用的措施[4]。此外,企業在經營事業活動時,應考量循環性,針對產品生命週期,從設計、生產、利用、廢棄等供應鏈所有階段中,根據其業態選擇所適合之循環經濟措施。 參、簡析 隨著ESG投資在國際逐年擴大,且國際供應鏈亦逐步要求企業採行循環經濟措施,日本本次發布「促進循環經濟與永續金融之揭露及對話指導」,即針對循環經濟與永續金融作出政策性宣示,為日本國內企業點明投資發展方向。對於企業而言,除了提供更具循環性的產品、服務,在企業價值創造故事中結合「價值觀」、「商業模式」,同時藉由企業年度報告將六項重點向投資者展示企業價值;對於投資者而言,除了關注投資效益,亦應以中長期的角度看待企業採取循環經濟措施對實現永續社會的價值,並對其進行適當評價與投資。 近年來我國政府與企業亦逐步向循環經濟轉型,於2018年12月通過「循環經濟推動方案[5]」,並在經濟部設立「循環經濟推動辦公室[6]」,以推動循環產業化、產業循環化,促進產業循環共生及轉型。而行政院環保署亦擬訂了「資源回收再利用推動計畫[7]」(2018至2020年),擬定有關如何有效利用資源與廢棄物適當處理之策略。由於推動循環經濟仍需要民間企業與投資者的支持,我國政府得參考日本作法訂定相關政策法規。且由於我國並未針對循環經濟制定專法,在資源利用方面,同時可能有「廢棄物管理法」及「資源回收再利用法」二者之適用,造成國內業者在推行創新商業模式遭遇法規障礙,不利於國內企業轉型循環經濟。故建議政府得因應政策變遷及經濟發展需求,通盤性建置循環經濟專法之制度框架,並滾動式調整相關規範,促進循環經濟產業發展,實現企業創新商業模式與新興合作關係,在永續金融方面則透過企業返還投資利潤予投資者,確立經濟與環境之間的良性循環,將有助於國內產業推行永續企業之循環經濟轉型。 [1]「サーキュラー・エコノミーに係るサステナブル・ファイナンス促進のための開示・対話ガイダンス」を取りまとめました,日本經濟產業省,https://www.meti.go.jp/press/2020/01/20210119001/20210119001.html ;環境省,https://www.env.go.jp/press/108893.html(最後瀏覽日:2021/6/10)。 [2]Task Force on Climate-related Financial Disclosures, Recommendations of the Task Force on Climate-related Financial Disclosures, https://www.fsb-tcfd.org/publications/final-recommendations-report/ (last visited June 10, 2021). [3]サーキュラー・エコノミーに係るサステナブル・ファイナンス促進のための開示・対話ガイダンス(本文),日本經濟產業省與環境省,頁6-7,https://www.meti.go.jp/shingikai/energy_environment/ce_finance/pdf/20200119_2.pdf(最後瀏覽日:2021/6/10)。 [4]同前註,頁12-13。 [5]行政院經濟能源農業處,循環經濟推動方案,https://www.ey.gov.tw/Page/448DE008087A1971/dc1de106-4298-4ad1-a9c7-f5b800f283cb (最後瀏覽日:2021/6/10)。 [6]經濟部工業局,循環經濟推動辦公室,https://cepo.org.tw/Default.aspx (最後瀏覽日:2021/6/10)。 [7]行政院環保署,資源回收再利用推動計畫,https://www.epa.gov.tw/Page/72968DDF9105BE07 (最後瀏覽日:2021/6/10)。