美國運輸部公布自駕車3.0政策文件

  美國運輸部(Department of Transportation)於2018年10月4日公布「自駕車3.0政策文件」(Preparing for the Future of Transportation: Automated Vehicles 3.0)」,提出聯邦政府六項自駕車策略原則:

  1. 安全優先:運輸部將致力於確認可能之安全風險,並促進自駕車可帶來之益處,並加強公眾信心。
  2. 技術中立:運輸部將會依彈性且技術中立之策略,促進自駕車競爭與創新。
  3. 法令的與時俱進:運輸部將會檢討並修正無法因應自駕車發展之交通法令,以避免對自駕車發展產生不必要之阻礙。
  4. 法令與基礎環境的一致性:運輸部將致力於讓法規環境與自駕車運作環境於全國具備一致性。
  5. 主動積極:運輸部將主動提供各種協助,以建構動態且具彈性之自駕車未來,亦將針對車聯網等相關補充性技術進行準備。
  6. 保障並促進自由:運輸部將確保美國民眾之駕駛自由,並支持透過自駕科技來增進安全與弱勢族群之移動便利,進而促進個人自由。

  「自駕車3.0政策文件」並建立五個策略,包括利益相關人參與、典範實務(best practice)、自願性標準、目標研究(Targeted research)與規範現代化等,配合以上原則進行。美國運輸部並肯認其先前提出之「安全願景2.0(A Vision for Safety)」中之安全性架構,並鼓勵技術與服務開發商持續遵循自願性之安全評估,並重申將依循自我認證(self-certification)而非特定認證管制途徑,以促進規範之彈性。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 美國運輸部公布自駕車3.0政策文件, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=8131&no=67&tp=1 (最後瀏覽日:2025/12/28)
引註此篇文章
你可能還會想看
音樂著作授權費 演出拉鋸戰

  根據著作權法第 82 條規定,著作權仲介團體與利用人間,對使用報酬爭議之調解,由著作權專責機關設置著作權審議及調解委員會辦理。新近社團法人中華音樂著作權仲介協會( MUST )提出網路電視、電影、網路廣播、網路上提供音樂欣賞、入口網站、網路音樂下載等行業業者公開傳輸費率,業者如有串流、下載、同步傳輸行為,應繳納高額之授權費用,遭到 業者抗議,此舉將遏殺數位業者萌芽的機會。   事實上在 94 年時,智慧局的費率審議委員會即曾駁回 MUST 提出的網路電視、電影等公開傳輸費率,但因網路電視、網路影片,所運用的素材不只是音樂,還包括小說、攝影、圖片,如果每一著作人都主張要收費,利用人的負擔將太重,所以智慧局當時並未通過其新費率。   不過,新近 MUST 又重新提出一個新的費率,網路電視、電影( MOD )如以串流方式公開傳輸,授權費用是業者前一年營業收入的 6% ;如果下載到硬碟、光碟片等,不是重製權,只是收下載「過路費」,授權使用費提高到前一年度營收的 10% ;如果是網路電視、電影同步傳輸,則以前一年度營收 2% 收取費用。即使是公益、非營利性的網路電視、電影,也要以全年度節目製播預算的 0.3% 計算音樂著作使用報酬。   由於此一費率與新興網路業者生存關係重大,經濟部智財局於 4 月中旬舉行「 MUST 新增、調高公開傳輸、公開演出使用報酬率意見交流會」,會中最後同意,由同行業的利用人團體一起組成談判小組,再與 MUST 進一步協商,具體討論出雙方能接受的方案。

智慧聯網之發展與個人資訊隱私保護課題:以歐盟之因應為例

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

奈米產業民間導引規範先行-以美國推動奈米保險機制及自願性計畫法制為例

TOP