歐洲生技產業協會促請降低中小型生技產業之專利申請費用

  在專利領域,歐盟層級目前尚未有任何整合全體會員國內國專利法之有效法規, 1973 年訂定之歐洲專利公約( European Patent Convention, EPC )並非歐盟層級的法律,且 EPC 僅就歐洲專利的申請、審核及取得予以規定,至於專利權之保護,專利權人仍必須在受侵害國家自行尋求救濟,故自 1972 年起,歐盟即一直試圖整合共同體之專利規定,持續催生「共同專利規則」(草案)( Proposal for a Council Regulation on the Community Patent ),目的是希望在歐洲層級,除了可以有統一受理及發給共同體專利之機制外,關於涉及共同體專利實體法上之解釋,亦能予以統一審理、解釋。


  目前歐盟各國紛歧的專利制度,使產業維護與保護其專利權益之成本極高,且受到嚴重影響的往往是那些中小型的新創與研發行公司,若再加上其他必要費用及語言隔閡(當前翻譯費用占歐洲專利的所有申請成本的比率可能高達 20 %)等因素一起比較,即可發現歐洲中小型企業處於競爭劣勢;相較於此,美國對雇用員工少於 300 人的企業的專利申請費用,提供高達 80 %的補助。


  由於生技產業多為中小型規模的企業,為確保這些企業的競爭力,歐洲生技產業協會( EuropaBio )建議歐盟參考去( 2005 )年 12 月 15 日 通過的「歐盟醫藥品管理局協助中小型公司發展之規則」( Commission Regulation (EC) No 2049/2005 )減免中小型生技製藥公司新藥上市申請規費的方式,對中小型企業之專利申請費用,亦給予折扣。


  這項建議獲得歐盟執委會的支持,執委會並打算在 10 月重新提出的共同體專利規則( Regulation on Community Patent - London Protocol )中納入考量根據 London Protocol ,未來歐洲專利得僅以三種語言(英文、德文及法文)提出,該 Protocol 必須至少有八個國家簽署,包括法國、德國及英國,始能生效 截至目前為止,已經有十個國家(包括德國及英國)的國會同意接受該協議,其中七國並已經相關文件交存,因此一般認為 London Protocol 通過的機率極大。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐洲生技產業協會促請降低中小型生技產業之專利申請費用, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=814&no=0&tp=1 (最後瀏覽日:2026/01/01)
引註此篇文章
你可能還會想看
歐盟議會發布《可信賴人工智慧倫理準則》

  2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。  問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。

德國資料倫理委員會針對未來數位化政策之資料運用發布建議報告

  德國資料倫理委員會(Datenethikkommission, DEK)於2019年10月針對未來數位化政策中的重點議題發布最終建議報告;包括演算法產生預測與決策的過程、人工智慧和資料運用等。德國資料倫理委員會是聯邦政府於2018年7月設置,由多位學者專家組成。委員會被設定的任務係在一年之內,制定一套資料倫理標準和指導方針,作為保護個人、維持社會共存(social coexistence)與捍衛資訊時代繁榮的建議。   最終建議報告內提出了幾項資料運用的指導原則,包含: 以人為本、以價值為導向的技術設計 在數位世界中加強數位技能和批判性思考 強化對個人人身自由、自決權和完整性的保護 促進負責與善意的資料使用 實施依風險調整的監管措施,並有效控制演算法系統 維護並促進民主與社會凝聚力 使數位化戰略與永續發展目標保持一致 加強德國和歐洲的數位主權

FCC第二號命令對我國必要轉播條款的啟示

資訊安全與電子商務-談資訊安全通報機制

TOP