專利審理暨訴願委員會(Patent Trial and Appeal Board, PTAB)成立於2012年9月16號。其成立之法源為《美國發明法案》(Leahy-Smith America Invents Act, AIA),承接「專利訴願暨衝突委員會」(Board of Patent Appeals and Interferences, BPAI)事務,成為美國專利商標局(United States Patent and Trademark Office,USPTO)下轄職司專利審理與訴願等相關程序的組織。PTAB主要可以分成「專利審理部門」(Trials)和「專利訴願部門」(Appeals)。
「專利審理部門」處理有爭議的案件,囊括四種處理方式:
除了專利所有權人的任何人,可以在專利公告或發證後9個月內提出,惟之前不得就專利無效提出訴訟。無效理由只要一項請求不具專利性即可,不需要是實質新問題(Substantial New Questions, SNQ)。但不可匿名,需揭露實質利益關係人。
在發證後9個月後才可提出,且必須是PGR終結後、提出確認之訴(Declaratory Judgment)之前、或被控侵權的1年內提出申請。且僅能以核准專利及公開文獻作為證據。
這是對所授予的商業方法專利的過渡型條款,將商業先使用抗辯(Prior Commercial Use Defense)擴大適用到所有專利的商業使用行為,不再侷限在方法專利。IPR、CBM類似於我國的舉發制度,只是 CBM 僅能就商業方法專利提出。
以往發明人身分爭議多仍以訴訟解決,原因之一為,過去程序係釐清誰先想到該構想或實踐該構想而非釐清原創者為誰。申請人調查程序將俾利身分的釐清。
「專利訴願部門」則是由超過一百位專利行政法官(Administrative Patent Judges)所組成,處理與被駁回專利申請相關的訴願。按 35 U.S.C. § 141(a),訴願人可以就PTAB的訴願結果,向美國聯邦上訴法院(United States Court of Appeals for the Federal Circuit, CAFC)提起訴訟;後續,可就聯邦上訴法院之判決,再上訴至最高法院(Supreme Court)。
本文為「經濟部產業技術司科技專案成果」
1990 美國身障礙法要求 FCC 確保在合理的情況下,有聽覺或語言障礙人士都能夠接近使用 電信轉接服務 ( telecommunication relay services , TRS ) 。 TRS 的提供使有聽覺或語言障礙者得以能夠利用電信設施與其他人溝通,而這樣的溝通過程必須是在有受過訓練之通訊輔助人 (communication assistant , CA) 的協助方能夠完成。 CA 會負責交換使用各種不同輔助通訊裝置 ( 例如 TTY 或電腦 ) 者與使用語音電話者間的通訊。為了減少因為通訊轉換所造成的中斷以及為了使該通訊在功能上幾近等同於語音通訊, TRS 相關規定要求 CA 必須等待至少 10 分鐘後,方能將該筆通訊移轉給另一個 CA 。然而,此規則應用於影像轉接服務 (Video Relay Serices) 時,卻引發相關疑義,例如當發話端使用 ASL(American Sign Language ,美國手語 ) 時, VRS CA 可能會因為使用的手語系統的不同而不能夠正確地了解發話端的意思,因此最好的情況時,可以立即將該筆通訊移轉給另外一個 CA 處理。於此情況下, FCC 於 16 日所發布的命令 (Order) 中表示,考量通訊本身的效率性, CA 可以將通訊移轉給另一名 CA 處理,而不必等待至少 10 分鐘後才將該通訊轉出去。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。
解析生技製藥研發成果涉及智慧財產保護之新課題