美國2018年5月14日拜杜法修法生效,NIH同年10月因應修法公布對應修正的研發成果經費資助政策

  美國拜杜法案修改由美國商業部的國家標準暨技術研究院(National Institute of Standards and Technology;簡稱NIST)於2018年5月14日發布生效,美國各界稱此次修法案為新拜杜法或是2018拜杜法(new Bayh-Dole Act Regulations)。除此之外;國家衛生研究院(National Institutes of Health;簡稱NIH)也於同年10月公布對應修正的研發成果經費資助政策,並調整IEdison系統以符合新法規。本次修法釐清多項定義、減低法規負擔、解決受資助單位與資助單位共有發明的問題、簡化電子控管程序。修法內容簡要說明如下:

  1. 適用範圍不限組織規模,包括非營利機構、小企業、個人,並擴及大企業。
  2. 若聯邦雇員是研發成果的共同發明人,其所有權由聯邦資助單位擁有。
  3. 一連串時間修正。包括(1)聯邦政府取得研發成果所有權改為無時間限制(原來是60天)。(2)研究機構須在專利申請期限60天前回復聯邦不申請專利的決定(原來是30天)。(3)美國臨時案申請轉為正式專利申請案的時限改為10個月,因為還需要加上提前60天通知聯邦機構不申請專利。
  4. 研究機構有權在工作合約要求職員將研究發明權利讓與給研究機構。
  5. 最初專利申請的範圍擴及PCT申請以及植物發明品種申請(原本僅限專利申請以及臨時案申請)。

相關連結
你可能會想參加
※ 美國2018年5月14日拜杜法修法生效,NIH同年10月因應修法公布對應修正的研發成果經費資助政策, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8164&no=0&tp=1 (最後瀏覽日:2026/02/03)
引註此篇文章
你可能還會想看
美國資訊安全分析新挑戰:巨量資料(Big Data)之應用

  在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。   資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。   不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。   由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。   美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。   「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。   不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。

美國參議院通過CISA網路安全資訊共享法案

  美國參議院於2015年10月27號通過網路安全資訊共享法(Cybersecurity Information Sharing Act; CISA)。本案以74票對21票通過,今年稍早眾議院通過類似法案,預計接下來幾周送眾議院表決。歐巴馬政府及兩院議員已就資訊共享法案研議多年,目前可望兩院就立法版本達成一致而立法成功。   主導本案的參議院情報委員會(Intelligence Committee)主席Richard Burr於法案通過後發表聲明表示,「這個作為里程碑的法案最終會更周全地保護美國人的個資不受外國駭客侵害。美國商業與政府機構遭受以日計的網路攻擊。我們不能坐以待斃」。副主席Sen. Feinstein於肯定法案對網路安全的助益之外,認為「我們在杜絕隱私憂慮的方面上盡了所有努力」。   CISA授權私人機構於遭受網路攻擊,或攻擊之徵兆(threat indicators)時,基於網路安全的目的,立即將網路威脅的資訊分享給聯邦政府,並且取得洩漏客戶個資的責任豁免權。基於同樣的目的,私人機構也被授權得以監視其網路系統,甚至是其客戶或第三人的網路。但僅以防禦性措施為限,並且不得採取可能嚴重危害他人網路之行動。相對於此,聯邦政府所取得該等私人機構自發性提供的網路威脅資訊,係以具體且透明的條款規制。此外,國土安全部(Department of Homeland Security)於符合隱私義務方針的方式下,管理電子網路資訊得以共享給其他合適的聯邦機構。檢察總長及國土安全部門秘書並建立聯邦政府接收、共享、保留及使用該等網路資訊的要件,以保護隱私。   相對於此,許多科技公司對此持反對態度,例如蘋果與微軟。隱私支持者更是於法案通過前後呼籲抵制,稱其為監視法。主要的論點圍繞在企業洩漏個資訊的寬鬆免責條款,這將會促使隱私憂慮。另一方面,法案反對者也不信任聯邦政府機構將會落實隱私保護,FBI、國家安全局(National Security Agency, NSA)及國家安全部則樂於輕易地取得、共享敏感的個資而不刪除之。   這些憂慮或許可以由法案投票前,網路法及網路安全學者共同發出的公開信窺知。「整體來說,(CISA)對有缺陷的網路安全中非常根本但真切的問題一無所助,毋寧僅是為濫權製造成熟的條件」。信中提到,該法案使聯邦機構得近用迄今為止公眾的所有資訊,並且對公司授權的範圍無明確界線,使公司對判斷錯誤的可能性毫無畏懼。這對於網路安全沒有幫助,方向應該是引導各機構提高自身的資訊安全及良好管理。

日本公布資料管理框架,促進資料加值應用

  日本經濟產業省2022年4月8日公布「協調性資料加值運用之資料管理框架-透過確保資料可信度創造資料價值之新路徑」(協調的なデータ利活用に向けたデータマネジメント・フレームワーク~データによる価値創造の信頼性確保に向けた新たなアプローチ),提示確保資料可信度之方法。經濟產業省於2019年7月31日設立「第3層︰網路空間信賴性確保之安全對策檢討工作小組」(『第3層:サイバー空間におけるつながり』の信頼性確保に向けたセキュリティ対策検討タスクフォース」,以下簡稱工作小組),討論確保資料可信度之要件,以利資料在網路空間內自由流通,並藉由資料創造出新的附加價值。   工作小組為確保資料可信度,首先定義資料管理為「將資料屬性依據其所涉之法令或組織規章,以及因蒐集、處理、利用、移轉等活動而改變之過程,視為一個生命週期加以管理」,並認為資料管理會受到屬性(資料性質,如內容、揭露範圍、利用目的、資料管理主體、資料權利者等)、場域(針對資料之特定規範,如各國、地區法令、組織內部規定、組織間契約等)及事件(產生、改變及維持資料屬性之事件,如生產、蒐集、處理、移轉、提供、儲存、刪除)等三大要素影響,並據此建立資料管理模型。   工作小組期待藉由上述三大要素,依序透過讓資料處理流程(事件)處於容易被觀察的狀態、整理所涉及之相關規範(場域),以及判斷資料屬性等步驟,讓利害關係人之間可更容易進行資料共享及資料治理。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

TOP