近期美國與中國大陸雙方針對貿易問題展開激烈攻防,起因為美國冀望透過「貿易戰」扭轉中美龐大的貿易逆差,而其中一個主要爭議點即為中國大陸日趨嚴重之侵權仿冒等問題。
中國大陸於第十三屆全國人大常委會表決通過最高人民法院提請審議的《關於專利等案件訴訟程式若干問題的決定》,批准最高人民法院設立知識產權法庭,主要審理專利等專業技術性較強的知識產權民事及行政上訴案件,以達成知識產權案件審理專門、集中及人員專業化之目的,提供更為專業之司法服務及保障。由最高人民法院知識產權法庭統一審理發明和實用新型專利為主之上訴案件,有利於對中外企業知識產權之保護,實現知識產權效力判斷與侵權判斷兩大訴訟程式和裁判標準的對接,以利解決機制上之裁判尺度不一問題,提高知識產權審判品質效率,提升司法公信力。
值得注意的是,最高人民法院知識產權法庭審理之案件,僅以不服知識產權一審判決、裁定中發明和實用新型專利等案件,其他上訴案件,仍由智慧財產權法院所在地的高級人民法院審理。中國大陸最高人民法院院長周強表示,知識產權法庭之設立,宣示平等保護中外市場主體知識產權,該知識產權法庭並不會處理與不正當競爭、商標或營業秘密有關之案件。
歐盟執委會於2021年7月14日公布一系列有關再生能源、能源效率、交通運輸、財稅政策、碳交易機制等議題之立修法提案。提案目的是希望整體制度能更加有助於歐盟氣候法(European Climate Law)中所設定減碳目標達成,於2030年減少相當於1990年55%的排碳量,故被稱為「Fit for 55」。 執委會為達成減碳目標,具體提案內容如下: (1)能源效率:修正《能源效率指令》(Energy Efficiency Directive),設定2030年能源消耗減少36~39%目標,並要求每年更新公部門建物至少3%,以提升能源效率; (2)再生能源:修正《再生能源指令》(Renewable Energy Directive),目標增加2030年的再生能源使用比例達現在的40%; (3)交通運輸:於陸路運輸,透過修正《小客車與輕型商用車新車二氧化碳排放規則》(Regulation setting CO2 emission standards for cars and vans),針對出廠新車制定2030年汽車55%、廂型商用車50%、2035年所有新車100%之減碳目標,並配合《替代燃料基礎設施規則》(Alternative Fuels Infrastructure Regulation)之修正,明訂高速公路每60公里設置充電站、150公里設置加氫站,以提供低碳運具之需求;於空運,歐盟航空永續燃料倡議(ReFuelEU Aviation Initiative),要求航空能源供應商增加永續燃料比例;針對海運,則透過歐盟海事燃料倡議(FuelEU Maritime Initiative),針對結合永續燃料與零排放科技的結果進行模擬,並設定最高排碳量。 (4)財稅政策:制定《碳邊境調整機制》(Carbon Border Adjustment Mechanism),針對被選定的目標產品(包含:水泥、電力、肥料、鋼鐵、鋁)訂定碳價格,於其自境外輸入時課徵稅費,以解決碳洩露問題;修正《能源稅指令》(Energy Taxation Directive),調整能源相關產品稅收計算方式、刪除不合時宜的規定,透過稅收調整能源使用之誘因,以貼近減碳需求。 (5)碳交易機制:修正《溫室氣體排放交易指令》(EU Emission Trading System Directive)擴大碳交易機制適用對象,納入海運、燃料供應中心,同時要求會員國應將碳交易所得,全數用於氣候能源相關計畫,以補足當前財務上的缺口。 總結而言,歐盟「Fit for 55」政策為使整體制度更符合2030年55%的減碳目標,透過個別部門減碳目標之設定、替代燃料之推動、財政誘因之調整等三種手段,希望多方面對減碳做出貢獻,以加速減碳的進程。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)
美國士兵曼寧因向「維基解密」網站洩漏國家外交及軍事情報而遭起訴22項罪名美國的情報分析員一等兵布蘭德利.曼寧(Brandly Manning),被控訴22項包括通敵罪、非法取得並散布外交及軍事機密的文件給「維基揭密」網站等妨害國家安全罪名,現被拘禁在馬里蘭州的米德堡。 曼寧一審由軍事法院審理,但軍事上訴審法院認為管轄權有爭議,為決定是否繼續適用軍事法院的審理程序,今年10月10日舉行預審聽證會,由五人一組的普通法院法官受理。同時,維基解密、憲法人權中心、美聯社等新聞媒體,均要求軍事法庭依憲法第一修正案,提供曼寧案的相關卷宗資料,但政府發言人查得費雪上尉(Captain Chad Fisher)表示,第一憲法修正案沒有絕對的效力,也未賦予法院公開卷宗的義務。若記者和大眾想獲得案件的文件資料,可透過「情報自由法」申請。但依「情報自由法」的申請程序非常冗長,而且美聯社和曼寧的辯護律師大衛.庫姆斯(david Commbs)的申請都已遭拒絕,律師大衛只能在私人網誌上向關心曼寧案的民眾公布案件進度和內情。 憲法人權中心的律師Shayana Kadidal 表示,不公開卷宗資料,就算參與了聽證會也無法理解案件的真實面貌,而無法做出準確的報導。但軍事法院對於憲法人權中心、新聞媒體及公眾要求公開法庭卷宗的訴求依然無動於衷。軍方和憲法人權中心將在之後會提交聲請,解釋為何他們認為軍事上訴審法院有權裁決卷宗是否公開。 曼寧下次庭期是明年2月4日,若通敵罪成立,曼寧將會被判終身監禁。
eBay網站因販賣仿冒品被法國法院判決敗訴並須賠償原品牌業者繼eBay 於 今年6月4日因未制止網拍業者於eBay 網站上拍賣仿冒品被法國法院( The Tribunal de Grande Instance in Troyes)判決敗訴 、 須與網拍業者共同賠償精品業者愛瑪士 (Hermes)2萬歐元後,不到一個月的時間,另一法國法院( The Tribunal de Commerce in Paris) 於6月30日再度判定eBay因任由網拍業者拍賣仿冒物品而需賠償LVMH集團共3860萬歐元並禁止eBay在其網站上販賣LVMH集團旗下包括迪奧(Dior)、嬌蘭(Guerlain)、紀梵希(Givenchy)及Kenzo 4個品牌之香水。 eBay 表示為了保護品牌業者的智慧財產權,其已投資了超過2000萬美元建置相關機制(The Verified Rights Owner) 讓品牌業者可以容易的發現仿冒的網拍品並通知eBay 將該物品下架。但愛瑪士及LVMH集團皆認為該機制尚不足以杜絕仿冒品的銷售。 針對LVMH之判決,Vanessa Canzini, eBay 的發言人表示 “如果有仿冒品出現在eBay 的網站上, eBay會迅速地將該物品下架,但此次的判決非關仿冒品”。 Sravanthi Agrawal, eBay 的另一發言人表示 “此次判決的重點在銷售管制 (指LVMH集團企圖壟斷其銷售管道),因eBay 並非LVMH集團所授權的銷售管道之一”。 eBay 表示LVMH集團的壟斷行為將對消費者造成傷害,將代表消費者提起上訴。 以上兩案經由法國法院針對拍賣網站提供平台販售仿冒品之判決結果預計將於國際間引發連鎖效應。一位美國智財律師表示美國法院目前認為在美國商標法下,eBay 有義務將仿冒品從其網站上移除。而法國法院的判決則更進一步要求拍賣網站在仿冒品被放上網站拍賣前就有義務制止其被拿出來販售。法國法院的見解如未被推翻將可能鼓勵其它國法院針對類似案件做出相同的判決結果。