事前承認制為日本基於科研成果廣泛運用之目的,透過產業技術力強化法第19條的增修正式引入拜杜法制度後,針對政府資助研發成果移轉或授權予計畫外第三人的情形賦予委託機關與執行單位的義務。在日本拜杜法制度下,政府資助研發成果的相關專利權原則上得歸屬於執行單位,但考量到這些研發成果若移轉給未預備活用該些成果之人,將會造成由國家資金所衍生的科研成果難以被運用,從而無法達成促進成果運用的法目的,因此在該法第19條第4項增訂事前承認制。
依該制度,執行單位若欲讓與歸屬於執行單位之政府資助研發成果所涉及專利權給第三人,或將使用該些專利權的權利設定或移轉予第三人時,除了符合政令所定不妨礙專利權運用之情形外,委託機關須和執行單位約定為上開移轉等行為前,須先取得委託機關的同意。
本文為「經濟部產業技術司科技專案成果」
美國目前沒有聯邦的隱私法,由各州訂定州隱私法、產業隱私法,要求企業應揭露資訊以提升資訊透明度,然而隱私法要求企業揭露的資訊多涵蓋了企業的營業秘密。美國華盛頓州州長於2023年4月27日簽署《我的健康資料法(My Health My Data Act)》的州隱私法,其將消費者的健康資料廣義定義為「與消費者有關或具合理關聯的個人資料,可用於識別消費者過去、現在或未來的物理或心理健康狀況」,例如醫療相關資料、患者接受醫療服務的精確地理位置、透過非健康資料可推斷得出的資料。「非健康資料可推斷得出的資料」,如零售業者蒐集消費者近期採購的訂單內容(非健康資訊),並透過AI機器學習分析得出消費者可能懷孕的比例及預產期,藉此對該消費者投放零售業者的嬰幼產品的個人化廣告。 於《我的健康資料法》廣義定義「健康資料」下,導致消費者可要求企業提供的資料可能涵蓋了「企業長期累積之消費者使用資料、經演算法分析運用之消費者使用資料、共享消費者資料的第三方企業名單」等企業認為屬於其營業秘密的資料。 為平衡隱私法的資訊透明度及企業想保護其營業秘密,建議企業可先採取: 1.使公司的智財部門與資料保護部門合作,確保公司人員對公司營業秘密標的及範圍的認知一致,並盤點企業所有的營業秘密以製作、持續更新營業秘密清單。 2.企業在揭露受營業秘密保護的資料給消費者前,先與消費者簽訂保密契約,並參考前述營業秘密清單約定契約之保密範圍。 如企業欲採取更完備的營業秘密管理措施,建議參考資策會科法所創意智財中心發布的《營業秘密保護管理規範》。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。
OECD氣候行動監測與科學技術之挑戰經濟合作與發展組織(Organisation for Economic Co-operation and Development,簡稱OECD)於2022年11月7日發布《2022年氣候行動監測 幫助各國邁向淨零碳排》(The Climate Action Monitor 2022 Helping Countries Advance Towards Net Zero),係由國際氣候行動計畫(International Programme for Action on Climate,簡稱IPAC)團隊撰擬,提供全球氣候行動的重要見解。 IPAC提出之分析方法係本於OECD與聯合國環境規劃署(United Nations Environment Programme,簡稱UNEP)的「壓力–狀態–回應」(Pressure-State-Response,簡稱PSR)環境指標模型。與政策回應相關的潛在限制與障礙,可區分為四個關鍵領域:1、治理:有效率的執行脫碳政策或需有新的治理框架;2、關鍵材料:脫碳政策需使用的關鍵材料如銅、鋰等;3、技能、技術與創新:回應氣候變遷政策需個人和機構有新的能力和技術;4、財政:以政策回應需有充足的資金。 推動淨零在科學技術上面臨的挑戰為關鍵材料的應用。相較於化石燃料,綠能技術需更多的材料;特別是應用於電力系統的銅和鋁,或應用於電池的鋰、鈷和石墨。稀土對於風力發電機、電動與混合動力汽車、行動電話、電腦硬體、平面顯示器和電視機為重要材料。惟此些關鍵材料的取得集中於極少數的國家,以致於供應鏈易受單邊衝擊的影響,而使價格飆升,阻礙轉型。原材料占綠色技術大部分的成本,而緊張的材料市場可能會阻止對綠色技術的使用。氣候計畫與公告需考量關鍵技術的風險,實踐可信且穩定的淨零碳排,需於全球開發新的資源、新型的加工製程,與加速投資。並藉由新技術,與發展特定材料的回收鏈,以減緩對取得材料的依賴。 OECD提出「福祉透視」(the Well-Being Lens)的流程,以協助各國確認與考量淨零轉型的優先政策。此過程的步驟為:1、預設若為運作良好的系統所能達成的成果;2、理解現行系統無法達成的原因,以及如何重組和設計系統;3、確認行動與政策對於改善系統運作具有潛力。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
二氧化碳減量 環保署建議政策環評環保署近日表示,一九九八年所訂二氧化碳減量標準無法達成,建議參考經濟合作暨發展組織( OECD )模式,在二○二五年年平均成長率降為一%,對工業、能源和交通等有影響環境之虞的政策實施「政策環評」。但學者研究認為,及早因應比延後減量更有利。依據環保署所提出對溫室氣體減量根本問題,所牽涉的工業、能源和交通等重大政策進行政策環評,首當其衝包括蘇花高、中油八輕和台塑大煉鋼廠恐都將接受「檢驗」。 除鋼鐵排放持續逐年增加,國內前一百大公司的溫室氣體排放量佔工業部門排放量九成,住商和運輸部門執行情況也差。尤其推動汽燃費改隨油徵收一直未落實,交通政策以大量資金投注在新道路建設,吸引更大車流,應檢討整體運輸政策。 在策略上,應根據現有環境影響評估法第廿六條,訂定「政府政策環境影響評估作業辦法」,對國家溫室氣體減量最根本所在的工業、能源、交通政策,以及其他有影響環境之虞政策,都應實施「政策環評」,並應建立現有能源價格和徵收碳稅討論機制。
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。