何謂日本拜杜法「事前承認制」?

  事前承認制為日本基於科研成果廣泛運用之目的,透過產業技術力強化法第19條的增修正式引入拜杜法制度後,針對政府資助研發成果移轉或授權予計畫外第三人的情形賦予委託機關與執行單位的義務。在日本拜杜法制度下,政府資助研發成果的相關專利權原則上得歸屬於執行單位,但考量到這些研發成果若移轉給未預備活用該些成果之人,將會造成由國家資金所衍生的科研成果難以被運用,從而無法達成促進成果運用的法目的,因此在該法第19條第4項增訂事前承認制。

  依該制度,執行單位若欲讓與歸屬於執行單位之政府資助研發成果所涉及專利權給第三人,或將使用該些專利權的權利設定或移轉予第三人時,除了符合政令所定不妨礙專利權運用之情形外,委託機關須和執行單位約定為上開移轉等行為前,須先取得委託機關的同意。

本文為「經濟部產業技術司科技專案成果」

※ 何謂日本拜杜法「事前承認制」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8175&no=67&tp=5 (最後瀏覽日:2026/02/04)
引註此篇文章
你可能還會想看
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

美國最高法院認定州政府得對電商業者課徵銷售稅

  美國最高法院在今(2018)年1月12日決定接受南達科塔州的上訴,就South Dakota v. Wayfair一案(下稱Wayfair案)進行審理,以決定州政府是否有權對網路零售業者課徵銷售稅。依據最高法院在1992年Quill v. North Dakota (下稱Quill案)所確立之原則,若網路零售商在該州無實體呈現 (physical presence),州政府即不得對該零售商向該州居民所銷售之貨物課徵銷售稅。   在1992年Quill案中,最高法院認為州政府對於遠距零售者(remote retailer)課稅,將違反潛在商務條款(dormant commerce clause),理由是對於無具體呈現的零售商課稅,將使其面對許多不同的課稅管轄權,造成零售商巨大的負擔,並增加州際商務的複雜性。南達科塔州認為科技的進步已使得零售商商所面臨課稅的複雜度降低,故在2016年通過法案對無實體呈現之電商業者課稅,因而引發相關爭訟。   本案在今年6月21日宣判由南達科塔州勝訴,判決指出隨著電子商務的成長及資訊科技的進步,課稅並不如過往會對業者造成具大的負擔,同時也可滿足正當程序與潛在商務條款的要求;此外,Quill案將會造成市場的扭曲,其所造成的稅捐保護傘將對具有實體呈現的業者造成不公平的競爭。因此認定Quill案已難以適用於現在的電子商務市場。   但本案仍有四位大法官反對,認為應由國會立法來糾正此一錯誤。因為國會並未明確授權州政府可對跨州零售交易課稅,因此才有潛在商務條款的適用,換言之,國會實際擁有立法授與各州徵收遠距交易之權力,在115期國會當中,也已經有相關的法案被提出,包括Remote Transaction Parity Act of 2017 (H.R. 2193)、Marketplace Fairness Act of 2017 (S.976)。在最高法院完成此一判決後,後續可繼續觀察美國國會是否會以立法的方式,授與州政府對跨州商業貿易課徵租稅。

英國BEIS發布第一代(SMETS1)智慧電表相容性公眾諮詢

  英國商業、能源和產業策略部(Business, Energy and Industrial Strategy, BEIS)於2018年4月17日發布公眾諮詢,議題為「最大化第一代(SMETS1)智慧電表的相容性(interoperability)」,該諮詢將截止於2018年5月24日。   英國對於SMETS1的推廣分為兩階段進行,基礎建設階段始於2011年,主要安裝階段則於2016年11月開始,國家數據及通訊供應商-資料通訊公司(Data Communications Company, DCC)自此階段開始營運,直至2020年智慧電表建置完成。   因現今由各能源供應商使用自身資料及通訊設備裝設第一代智慧型電表,造成消費者無法任意更換能源供應商之情況。對此,英國政府之長期政策目標雖為SMETS1最終可全數透過DCC進行運作,然由於現階段尚未強制能源供應商使用DCC所提供之服務,使用SMETS1的消費者仍無法自由的轉換能源供應商。   本文件提出了兩個方案向公眾諮詢: 要求能源供應商於六個月時限內至DCC註冊其所提供且合於規範的SMETS1,或將SMETS1更換為SMETS2(第二代智慧電表)。而於2020年12月31日前,所有未註冊之SMETS1將強制更換為SMETS2。 若能源供應商已嘗試所有合適的解決方法,仍無法於2019年底前使SMETS1在智慧模式下運作,就必須在2020年6月底前將SMETS1更換為SMETS2。 若供應商係於2019年後才取得SMETS1,於獲得SMETS1之後的六個月內採取所有相關措施後仍無法令SMETS1以智慧模式運作,亦應更換為SMETS2。最終,所有不能運行智慧模式之SMETS1將於2020年12月31日前被完全汰換。   英國政府期透過更完善的政策規劃改善現階段SMETS1透過個別能源供應商之數據及通訊系統運作之情況,以確保SMETS1之智慧模式於消費者更換供應商時能維持正常運作,使消費者可確實獲取改用智慧電表之利益。我國於2015年已開始推動低壓智慧電表建置,英國面臨之問題值得借鏡,政府於推廣低壓智慧電表之同時應注意智慧電表基礎設施之相容性,以增進低壓智慧電表建置效率及降低建置成本。

日本發布新版之農業資料利用推動報告,並透過資料交換及利用機制確保資料共享及協作

日本農林水產省於2025年9月在智慧農業網站上發布新版之農業資料利用推動(下稱報告),其內容包含2025年通過閣議決定之食材、農業、農村基本計畫,並指出為確保農業數位資料與人工智慧(下稱AI)之間的串聯應用,農業資料合作基礎平台(下稱WAGRI)的建立與資料協作、共有、提供功能是其不可或缺的要素。 報告指出,透過各式農業數位資料的蒐集與整合,諸如過往作物收成量資料、市場價格資料、土壤資料、農地資料、氣象資料等,並經過統合及分析後,可以達到提升作業效率及收益、減少勞動作業時間與器材損耗,以及降低環境負荷之效果。截至2025年9月為止,WAGRI網站上已提供高達223種農業數位資料相關的API,供農業領域從業者介接運用,並作為未來開發農業領域基礎AI模型的前置準備。 此外,報告亦指出WAGRI已於日本全國範圍內蒐集大量的農業數位資料,用以開發農業領域之基礎AI模型,並預計於2026年在WAGRI網站上提供基礎AI模型服務。未來農業領域從業者可透過WAGRI網站提供之基礎AI模型服務,輔以自身之農業數位資料,建立符合自身農業場域特性之特化型AI模型。 然而,報告亦指出不論是農業數位資料的API介接運用,還是將農業數位資料用以開發基礎AI模型,農業數位資料之法制配套仍需整備。因此,除了資料權屬等關係釐清外,報告特別提出於AI開發應用、資料共享之模式下,尚須建立「涵蓋資料整體生命週期之資料交換及利用機制」,包含資料對外公開之選擇權、資料提供之事前同意權、資料安全管理對策,以及資料刪除請求權等範圍,以確保農業數位資料在利用前的安心共享與協作。 我國政府如欲於農業領域發展基本AI模型,除應於全國範圍內蒐集大量之農業領域數位資料外,亦應建立串聯資料整體生命週期之資料交換及利用機制,以降低農業數位資料之間的協作風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP