2018年7月27日印度電子及資訊科技部(Ministry of Electronics and Information Technology, MeitY)公告個人資料保護法草案(Protection of Personal Data Bill),若施行將成為印度首部個人資料保護專法。
其立法背景主要可追溯2017年8月24日印度最高法院之判決,由於印度政府立法規範名為Aadhaar之全國性身分辨識系統,能夠依法強制蒐集國民之指紋及虹膜等生物辨識,國民在進行退稅、社會補助、使用福利措施等行為時都必須提供其個人生物辨識資料,因此遭到人權團體控訴侵害隱私權。最高法院最後以隱私權為印度憲法第21條「個人享有決定生活與自由權利」之保護內涵,進而認為國民有資料自主權,能決定個人資料應如何被蒐集、處理與利用而不被他人任意侵害,因此認定Aadhaar專法與相關法律違憲,政府應有義務提出個人資料專法以保護國民之個人資料。此判決結果迫使印度政府成立由前最高法院BN Srikrishna法官所領導之專家委員會,研擬個人資料保護法草案。
草案全文共112條,分為15章節。主要重點架構說明如下:
[1]對於敏感個人資料之定義,草案第3-35條規定,包含財務資料、密碼、身分證號碼、性生活、性取向、生物辨識資料、遺傳資料、跨性別身分(transgender status)、雙性人身分(intersex status)、種族、宗教或政治信仰,以及與資料主體者現在、過去或未來相連結之身體或精神健康狀態的健康資料(health data)。
英國數位文化媒體暨體育部(Department for Digital, Culture, Media and Sport, DCMS)2020年9月1日發布「數位身分:政府諮詢回應」(Digital Identity: Call for Evidence Response)文件,以回應過去英國政府曾於2019年7月向各界蒐集如何為成長中的數位經濟社會建立數位身分系統之意見。依據諮詢意見之成果,英國政府計畫調修現行法規,使相關身分識別流程以最大化容許數位身分之使用,並發展有關數位身分之消費者保護立法;立法中將特別規範個人之權利、如何賠償可能產生的侵害,以及設定監督者等相關內容。數位身分策略委員會(Digital Identity Strategy Board)並提出六項原則,以加強英國之數位身分布建與政策: 隱私:當個人資料被使用時,應確保具備相關措施以保障其保密性與隱私; 透明性:當個人身分資訊於使用數位身分產品而被利用時,必須確保使用者可了解其個資被誰、因何原因,以及在何時被利用; 包容性:當人們希望或需要數位身分時即可取得。例如不備有護照或駕照等紙本文件時,對於其取得數位身分不應產生障礙; 互通性(interoperability):應設定英國之技術與運作標準,使國際與國內之使用上可互通; 比例性:使用者需求與其他因素(如隱私與安全)之考量應可平衡,使數位身分之使用可被信賴; 良好監理:數位身分標準將與政府政策與法令連結,未來之相關規範將更加明確、一致並可配合政府對於數位管制之整體策略。
循環型採購(Circular Procurement)相較於綠色採購(Green public procurement, GPP)所揭櫫的於採購產品、服務或勞務時選擇於其生命週期中對於環境造成衝擊較小者,循環型採購(Circular Procurement)可說是在綠色採購的基礎上,加入循環經濟(Circular Economy)強調最大化資源利用效率的概念,使對於環境的影響與衝擊並非唯一的標準,而應考量產品、服務或勞務對資源的利用效益。 歐盟執委會於2017年10月發布《循環經濟公共採購範例與指引》(Public Procurement for A Circular Economy: Good Practice and Guidance),其中指出循環型採購的意義在於促進歐盟邁向循環經濟轉型,藉由循環型採購所創造的需求,達成循環經濟所強調封閉資源循環(Closing the Loop)以最大化資源利用效率的概念,並肯認政府採購為推動循環經濟轉型的重要誘因之一。 具體的循環型採購做法,包含選擇具高度資源循環利用性的產品,例如可維修、再利用或利於回收再循環的產品,以及以採購服務代替採購硬體等,透過循環型採購對於資源利用效率的重視,支持符合循環經濟概念的產品設計、研發技術與商業模式等創新成果,與提出這些解決方案的企業或團隊,進而達成促進社會邁向循環經濟轉型與永續發展的目標。
美國參眾兩院提出嚴禁專利藥廠簽訂授權學名藥協議系列法案美國過去透過Hatch-Waxman Act之立法,建立起「簡易新藥申請」(Abbreviated New Drug Application,ANDA)制度,促使學名藥廠開發學名藥後,能較迅速地通過藥品查驗登記,且首家獲得ANDA上市許可的學名藥廠還可享有180日的市場專屬保障;但是,專利藥廠近年卻設計出授權學名藥(Authorized Generic Drug)、原廠學名藥(Rebranded Generic Drug)和專利與學名藥訴訟和解協議(Brand-Generic Litigation Settlement)等智慧財產權管理策略,用以瓜分專利到期後的學名藥市場。 為了矯正此種實務發展,今(2007)年初美國參眾兩院先後提出內容一致的「公平處方藥競爭法案」(Fair Prescription Drug Competition Act, S.438)和「修正聯邦食品藥品化妝品法禁止授權學名藥上市法案」(To amend the Federal Food, Drug, and Cosmetic Act to prohibit the marketing of authorized generic drugs, H.R.806),禁止專利藥廠自行或間接製造銷售原廠學名藥,或是授權第三人製造銷售授權學名藥,企圖透過立法方式,確保首家提出ANDA的學名藥廠,在其所獲180日市場專屬期間內,不會因專利藥廠利用推出原廠或授權學名藥之策略而稀釋掉該學名藥的市佔率。但本法案未禁止專利藥廠與獲得市場專屬保護的學名藥廠簽訂類似協議;假使該學名藥廠經商業判斷後寧願與專利藥廠簽訂協議,僅需依現行規範將該協議通報FTC和司法部即可。 美國參議院亦提出「保護可負擔學名藥取得法案」(Preserve Access to Affordable Generics Act, S.316),禁止專利藥廠直、間接簽訂給予ANDA申請者任何對價(不限金錢)且要求其不得研發、製造、銷售或販賣該學名藥之專利侵權訴訟和解協議;例如專屬給付和解協議(Exclusion Payment Settlement)、逆向給付和解協議(Reverse Payment Settlement)等。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)