日本文化廳文化審議會著作權分科會於2018年2月13日,出具分科會報告書,內容說明著作權法修正之方向。書中提及「重新檢視並修正違法下載之態樣」一點,擬將違法下載之態樣及動作,由「影音」擴及到所有靜態圖文(如漫畫、照片、小說、雜誌及論文等),「下載」擴及「截圖」(スクショ,screenshot)。
此次修法,起因於近來日本大量出現線上盜版漫畫網站,推估其半年所造成之損失可達4000億日幣以上。該報告書公布後,隨即湧現大量反對之聲浪。反對者認為修法之弊大於利,日本漫畫學會對此發表反對聲明,會長竹宮惠子對於修法表示憂心,認為修法將導致以下問題:
報告書中亦提及,在個人部落格及需加入會員之社群網(SNS)上傳或下載未經著作權人同意而公開之著作,亦屬違法。倘若為全書掃描上傳等惡性重大之行為,應科以刑責。
針對上述疑慮,報告書中的確未排除修法後將造成著作物在網路上利用萎縮之可能,然仍強調應透過官民間之合作努力,傳達正確之修法内容。並由出版社端導入「ABJ Mark」,推動正版漫畫流通平台,透過科技推動盜版網頁近用警示制度,使大眾知悉其行為即將侵害著作權等。由於法令修正之内容,影響人民日常生活甚鉅,後續修法將在各團體間如何折衝,上述措施能否普及或啟發人民觀念,值得後續持續關注。
法國國家資訊自由委員會(CNIL)於2023年10月16日至11月16日進行「人工智慧操作指引」(AI how-to sheets)(下稱本指引)公眾諮詢,並宣布將於2024年初提出正式版本。本指引主要說明AI系統資料集建立與利用符合歐盟一般資料保護規則(GDPR)之作法,以期在支持人工智慧專業人士創新之外,同時能兼顧民眾權利。 人工智慧操作指引主要內容整理如下: 1.指引涵蓋範圍:本指引限於AI開發階段(development phase),不包含應用階段(deployment phase)。開發階段進一步可分為三階段,包括AI系統設計、資料蒐集與資料庫建立,以及AI系統學習與訓練。 2.法律適用:當資料處理過程中包含個人資料時,人工智慧系統的開發與設計都必須確定其適用的法律規範為何。 3.定義利用目的:CNIL強調蒐集及處理個資時應該遵守「明確」、「合法」、「易懂」之原則,由於資料應該是基於特定且合法的目的而蒐集的,因此不得以與最初目的不相符的方式進一步處理資料。故明確界定人工智慧系統之目的為何,方能決定GDPR與其他原則之適用。 4.系統提供者的身分:可能會是GDPR中的為資料控管者(data controller)、共同控管者(joint controller)以及資料處理者(data processor)。 5.確保資料處理之合法性:建立AI系統的組織使用的資料集若包含個人資料,必須確保資料分析與處理操作符合GDPR規定。 6.必要時進行資料保護影響評估(DIPA)。 7.在系統設計時將資料保護納入考慮:包含建立系統主要目標、技術架構、識別資料來源與嚴格篩選使用…等等。 8.資料蒐集與管理時皆須考慮資料保護:具體作法包含資料蒐集須符合GDPR、糾正錯誤、解決缺失值、整合個資保護措施、監控所蒐集之資料、蒐集之目的,以及設定明確的資料保留期限,實施適當的技術和組織措施以確保資料安全等。 對於AI相關產業從事人員來說,更新AI相關規範知識非常重要,CNIL的人工智慧操作指引將可協助增強AI產業對於個資處理複雜法律問題的理解。
歐盟發布「人工智慧白皮書」以因應人工智慧未來可能的機遇與挑戰人工智慧目前正快速發展,不論是在醫療、農業耕作、製造生產或是氣候變遷等領域上,均帶來了許多改變,然而在人工智慧應用之同時,其也存在許多潛在風險如決策不透明、歧視或其他倫理與人權議題。 歐盟為求在全球競爭激烈的背景下,維護其於人工智慧相關領域的領先地位,並確保人工智慧技術於改善歐洲人民生活的同時,亦能尊重(respecting)人民權利,乃於今年(2020年)2月發布「人工智慧白皮書」(White Paper on Artificial Intelligence),將採投資及監管併用之方式,促進人工智慧應用與解決其相關風險,其對於未來促進人工智慧的應用(promoting the uptake of AI)與相關風險解決,計畫朝向建立卓越生態系統(An Ecosystem of Excellence)及信任生態系統(An Ecosystem of Trust)兩方面進行。 在建立信任生態系統中,歐盟提到因為人工智慧具有變革性的潛力,所以就信任的建立乃至關重要,未來歐洲人工智慧的監管框架除了須確保遵守歐盟法規外(包括基本權利保護與消費者權益維護之規範),對於高風險性之人工智慧應用,其將強制要求需於銷售前進行合格評定(mandatory pre-marketing conformity assessment requirement)。而有關高風險性之定義,歐盟於該白皮書指出須符合以下兩個要件: 考量人工智慧應用之一般活動特徵,其預計會有重大風險的發生,例如在醫療保健、運輸、能源和可能屬於高風險的公共領域;以及 在預期用途或應用上都可能對個人(individual)或企業(company)帶來重大的風險,特別是在安全性(safety)、消費者權益(consumer rights)與基本權利(fundamental rights)上。 歐盟委員會目前針對於以上白皮書之內容與附隨報告,將向公眾徵詢意見至今年5月19日。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
英國資訊委員辦公室(ICO)發布當事人近用請求權實務準則英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2013年8月8日發布當事人近用請求權實務準則(subject access code of practice),以協助資料控制者遵循1998年資料保護法(Data Protection Act 1998,DPA)有關當事人行使近用權(access right)之規定。 根據DPA,任何資料主體都有權利接觸、查詢其被資料控制者擁有之個人資料,即當事人向資料控制者請求近用其個人資料之權利。當事人近用請求權實務準則闡明資料主體的查閱請求權、製給複製本請求權等權利,與資料控制者回應當事人近用請求權的責任,該項權利允許當事人查詢其信用卡紀錄、健康紀錄等資料,資料控制者一旦收到當事人請求,必需於40天內回覆。 ICO同時發布10項簡易步驟,以協助資料控制者衡量回應當事人近用請求權。內容包括:1.確認當事人提出之請求是否為當事人近用請求權;2.確保有足夠資訊可識別請求者的身分;3.若需要更多資訊以釐清請求者之需求,立即向請求者提出;4.若需收費,及時向請求者提出;5.確認是否有請求者需求的資訊;6.即使紀錄不正確或令人尷尬,都不要試圖更改該紀錄;7.衡量紀錄中是否含有他人資訊;8.確認是否有提供資訊之義務;9.確認能解釋資訊中的複雜名詞;10.於適當的情形下,永久保存回覆當事人資訊的副本。 這項實務準則將協助資料控制者更即時且有效地處理當事人對其資料近用請求之相關事項,同時證明資料控制者係以公開且透明之方式妥善管理其所蒐集之顧客資料。