日本從事農業者高齡少子化以致後繼無人,農業ICT(Information and Communication Technology)可使資深農民內隱知識外顯化而利於經驗傳承,例如已有地區透過除草機器人、自動運行農機等ICT農機,蒐集稻米收穫質量之數據進行分析,實作出施肥最適條件的成功案例。
然而成功案例之數據利用,延伸至其他地區實踐時卻顯得窒礙難行。首先是成本面,農場計測溫溼度等數據之感測器的設置、管理維護與通信等成本負擔,宛如藏寶洞前豎立之石門,不得其門而入。另一造門磚是農機或感測器等不同業者之系統服務互不相容,且數據無法互換共用,為求最適合特定地區與農作物之農業ICT組合,且能移植成功案例至其他地區,系統相容數據共用亦是當務之急。
日本農業數據協作平台(簡稱WAGRI),可為大喊芝麻開門之鑰,日本於2017年內閣府計畫支持下,由農業生產法人、農機製造商、ICT供應商、大學與研究機關等組成聯盟,一同建置具備「合作」(打破系統隔閡使數據得以相容互換)、「共有」(數據由提供者選定分享方式)、「提供」(由公私部門提供土壤、氣象等數據)三大功能之WAGRI,今年已有實作案例指出,活用WAGRI後,在數據蒐集與利用上的勞力與時間成本明顯縮減。
台灣農業同樣面臨高齡化、傳承之困境,日本WAGRI整合與共享數據的模式可作為我國發展農業ICT活用數據之參考。
今年全球受到新型冠狀病毒(下稱COVID-19)影響,許多產業遭受嚴重衝擊。美國政府於2020年3月27日頒佈「新冠病毒援助紓困經濟安全法(簡稱CARES)」,對此專利及商標局(USPTO)也針對受COVID-19影響之專利或商標申請案,給予延長申請期限、付款等寬限措施。 由於寬限措施將於今年5月31日到期,USPTO認為COVID-19爆發的影響可視為37 CFR 1.183所指的特殊情況。因此,USPTO將允許專利權人通過EFS-Web或專利中心,提交符合某些條件之專利及商標救濟申請。 商標救濟措施部分,因COVID-19影響商標審判與上訴委員會之訴訟,可提出延長或新時間之申請。其他未能即時對主管機關的訴訟提出答覆,致使放棄商標申請案,得提出恢復請求;未能於法定使用期限36個月內或維護申請截止日前申請,致使放棄商標申請或商標註冊被取消或期滿,得提出請願書。上述請願書中若附有COVID-19聲明,USPTO除免除相關費用,並可延續救濟措施至6月30日。 專利救濟措施部分,針對小型和微型企業(small and micro entities)之專利申請提交期限,由原先6月1日延長至7月1日;大型企業(large entities)於5月31日後,依個案申請提供延期,包含請願書及所需費用;對於所有企業,USPTO將免除6月30日及先前因COVID-19影響所提出審查、請願書等費用收取。
愛沙尼亞首創「數位遊牧簽證」吸引高收入高專業的數位遊牧民族2020年6月3日,愛沙尼亞議會通過了「外國人法(Aliens Act)」修正案,批准了全球首創專為「數位遊牧民族(Digital Nomads, DN)」設計的「數位遊牧簽證(Digital Nomad Visa, DNV)」,並於同年8月1日正式開辦。 「數位遊牧民族(DN)」為近年來興起的一種工作與生活型態,意指無需固定的工作時間與地點,只要有網路就能工作,通常是邊工作邊旅遊、經常在各國移動的生活型態,一般傳統的工作簽證或旅遊簽證較難直接適用。 今年因COVID-19疫情影響,許多人轉為遠距工作,也使更多人成為DN。而以數位治國聞名全球的愛沙尼亞,於2014年推出e-Residency(數位公民計畫)向全球招收數位公民後,進一步推出「數位遊牧簽證(DNV)」。DNV申請人可以是受雇者、企業經營者或是自由工作者,必須為外國企業工作、經營外國企業或是客戶位於國外(但不禁止在當地兼職);其次,申請人必須證明近6個月每月3,504歐元(約新臺幣12萬元)的收入,取得DNV者即可到當地居住一年。該政策看重其高收入、高消費能力,以及高專業性,能在IT、金融、行銷或相關領域獨立工作,為當地科技業提供創意與技術,帶動產業、增加產值;其在境內期間的收益亦可成為充實國家稅捐的標的,在經濟上具有正面效益,在社會上亦可增加多元性、開拓國際事業,並提升國際知名度。
談數位內容法制之立法模式與合併問題 歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」