日本農業數據利用的瓶頸與農業數據平台WAGRI的誕生

  日本從事農業者高齡少子化以致後繼無人,農業ICT(Information and Communication Technology)可使資深農民內隱知識外顯化而利於經驗傳承,例如已有地區透過除草機器人、自動運行農機等ICT農機,蒐集稻米收穫質量之數據進行分析,實作出施肥最適條件的成功案例。

  然而成功案例之數據利用,延伸至其他地區實踐時卻顯得窒礙難行。首先是成本面,農場計測溫溼度等數據之感測器的設置、管理維護與通信等成本負擔,宛如藏寶洞前豎立之石門,不得其門而入。另一造門磚是農機或感測器等不同業者之系統服務互不相容,且數據無法互換共用,為求最適合特定地區與農作物之農業ICT組合,且能移植成功案例至其他地區,系統相容數據共用亦是當務之急。

  日本農業數據協作平台(簡稱WAGRI),可為大喊芝麻開門之鑰,日本於2017年內閣府計畫支持下,由農業生產法人、農機製造商、ICT供應商、大學與研究機關等組成聯盟,一同建置具備「合作」(打破系統隔閡使數據得以相容互換)、「共有」(數據由提供者選定分享方式)、「提供」(由公私部門提供土壤、氣象等數據)三大功能之WAGRI,今年已有實作案例指出,活用WAGRI後,在數據蒐集與利用上的勞力與時間成本明顯縮減。

  台灣農業同樣面臨高齡化、傳承之困境,日本WAGRI整合與共享數據的模式可作為我國發展農業ICT活用數據之參考。

相關連結
相關附件
你可能會想參加
※ 日本農業數據利用的瓶頸與農業數據平台WAGRI的誕生, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8198&no=65&tp=1 (最後瀏覽日:2024/11/24)
引註此篇文章
你可能還會想看
美國總統拜登簽署「改善國家網路安全」行政命令

  美國總統拜登於2021年5月12日簽署「改善國家網路安全」總統行政命令(Executive Order on Improving the Nation’s Cybersecurity),旨在增進美國政府與私部門在網路安全議題的資訊共享與合作,以加強美國對事件發生時的因應能力。本命令分從數個面向達成前述目標,分別為: (1)情資共享之強化:消除威脅政府與私部門之間資訊共享的障礙,要求IT與OT服務者偵測到可疑動態時,與政府共享相關資訊與相關安全漏洞資料,簡化並提高服務商與聯邦政府系統服務合約之資安要求。 (2)現代化聯邦政府網路安全:針對聯邦政府網路,建構更現代化與嚴格的網路安全標準,並採取零信任架構,例如應強化雲端服務與未加密資訊之共享機制,包括由公眾直接透過WiFi連網取得或下載之資訊網頁等,針對其建構安全機制、更新加密金鑰與建構新的安全工具。 (3)強化軟體供應鏈安全:提高軟體供應鏈安全性,包括要求開發人員提高其軟體透明度、公開安全資料、利用聯邦資源促進軟體開發市場,以及建構軟體認證,使市場更容易確定該軟體的安全性。 (4)建立資安審查委員會:建立由公私部門共同合作的資安審查委員會(Cybersecurity Safety Review Board),針對重大資安事件做及時的回應、,並進行獨立第三方之審查與建議。 (5)標準化聯邦政府應對資安弱點及資安事件的教戰手冊:建構聯邦政府因應資安事件之資安事件教戰手冊,使聯邦政府得以及時並一致地回應網路攻擊事件。 (6)改進對聯邦政府網路資安弱點及資安事件之偵測:清查聯邦政府端點,改善聯邦政府對資通安全事件的偵查能力,並進一步布建強大的端點監測和回應系統(Endpoint Detect and Response, EDR)。 (7)提升聯邦政府調查與補救之能力:提升資訊安全事件調查與補救能力,並透過更頻繁與一致的資安事件日誌來減緩駭客對聯邦政府網路的入侵。 (8)建制國家安全系統:要求聯邦政府部門採用符合相關網路安全要求之國家安全系統。   本行政命令是美國政府在美國油管遭駭事件後,對相關事件之具體因應。本行政命令雖主要著眼於聯邦政府的網路安全,但亦透過總統行政命令鼓勵私部門在網路安全核心服務上加強合作與投資。預計美國在此總統行政命令基礎上,將有進一步強化公私合作的措施與資源挹注。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

開放非銀行從事預付式行動付款服務法制議題之研究

美國加密法案隨潮流再起

  緣起於2016年的加密法案(ENCRYPT Act),由於今年發生了臉書劍橋分析事件,以及歐盟GDPR的影響,本此法案再提的聲勢如浪潮襲來,不僅眾多議員附和,連企業(如:電子前線基金會Electronic Frontier Foundation,EFF)都予以支持。   加密法案的主要內容係以兩方面進行加密應用之保護, 各州州政府不得授權或要求產品或服務的製造商、開發商、銷售商或供應商,(A)設計或更改產品或服務中的安全功能,以供其進行監視或允許其進行實體搜索;(B)使其有能力解密或便於理解加密應用後的內容。 各州州政府不得禁止加密或類似安全功能的產品或服務,進行製造、銷售或租賃、提供銷售或租賃, 或向公眾提供覆蓋的產品或服務。此外,法案亦針對相關服務或產品的定義作了明確的說明。   本法案的主要提案者美國眾議員Ted Lieu指出,與加密或資料存取相關的問題,皆應在聯邦政府的層級進行討論,而就其本身電腦科學的專業,指出在各州間保有不同的加密應用執法標準,對資安、消費者、創新,以及執法本身都是不利的,引此本法案的推動旨在強化州際商業和經濟安全,以及網路安全問題,希望能對加密應用議題作全國性的討論,而不會損害使用者在過程中的安全性。

TOP