美國加州「對話機器人揭露法案」

  美國加州議會於2018年9月28日通過加州參議院之對話機器人揭露法案(Bots Disclosure Act, Senate Bill No. 1001)。此一法案於美國加州商業及專門職業法規(Business and Professions Code)第七部(Division)第三篇(Part)下增訂了第六章(Part)「機器人」乙章,擬防範「利用對話機器人誤導消費者其為真人同時並誤導消費者進行不公平交易」之商業模式,本法案將於2019年7月1日正式生效。依此法案,企業如有使用對話機器人,則應揭露此一事實,讓消費者知悉自己是在與對話機器人溝通。

  美國加州對話機器人揭露法案對於「機器人」之定義為全自動化之線上帳戶,其所包含之貼文、活動實質上並非人類所形成。對於「線上」之定義為,任何公眾所可連結上之線上網站、網路應用軟體、數位軟體。對於「人類」之定義為自然人、有限公司、合夥、政府、團體等其他法律上組織或擬制人格。如業者使用對話機器人進行行銷、推銷時,有揭露其為對話機器人之事實,將不被認定違反對話機器人揭露法案,但揭露之手段必須明確、無含糊且合理可讓消費者知悉其所對話之對象為非人類之機器人。值得注意者為,美國加州對話機器人揭露法案,針對「美國本土造訪用戶群在過去12月間經常性達到每月10,000,000人」之網站,可排除此規定之限制。

  本法案僅課予業者揭露義務,至於業者違反本法之法律效果,依本法案第17941條,需參照其他相關法規予以決定。例如違反本法案者,即可能被視為是違反美國加州民法揭露資訊之義務者而需擔負相關民事賠償責任。最後值得注意者為,本法案於第17941條針對「利用對話機器人誤導公民其為真人同時影響公民投票決定」之行為,亦納入規範,亦即選舉人如有利用對話機器人影響選舉結果而未揭露其利用對話機器人之事實時,依本條將被視為違法。

本文為「經濟部產業技術司科技專案成果」

※ 美國加州「對話機器人揭露法案」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8203&no=67&tp=5 (最後瀏覽日:2026/01/30)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

英國《海外犯罪資料提供請求法》(COPO Act)

  英國《海外犯罪資料提供請求法》(Crime (Overseas Production Orders) Act 2019, COPO Act)於2019年2月12日由英國女王御准(royal assent)生效。   過去,英國請求海外證據法源依據僅有〈國際司法互助條約〉(Mutual Legal Assistance Treaties)支撐,且無明確的實施規範可作為依循。隨通訊網路科技日新月異,犯罪及犯罪證據的資料儲存地打破國界。《海外犯罪資料提供請求法》即是給予海外犯罪資料提請求程序一個明確的規範。在與他國簽署條約(designated international co-operation arrangement,指:司法互助條約或英國內閣大臣依法指定的條約)之前提下,《海外犯罪資料提供請求法》授權英國執法機構與相關單位(appropriate officer)可向法院聲請搜索票,並憑藉搜索票請求被搜索自然人或法人,提供儲存於英國境外的電子資料(electronic data)或特種電子資料(excepted electronic data)。本法所稱「電子資料」係指以電子儲存的資料;「特種電子資料」則是指法律專業人士與其客戶的通訊紀錄,或自然人與死者在具有保密義務之情況下所產生的紀錄。   在英格蘭、威爾斯和北愛爾蘭,可依《海外犯罪資料提供請求法》向法院聲請搜索令的相關單位包含:員警(constable)、英國稅務海關總署(Revenue and Customs)、英國嚴重詐欺辦公室(Serious Fraud Office, SFO)、特許金融調查人員(accredited financial investigator)、反恐金融調查人員(counter-terrorism financial investigator)、英國金融行為監理總署(Financial Conduct Authority)依法指定的調查人員或其他內閣大臣所公告之規則所指名的人員。在蘇格蘭則是檢察官(procurator fiscal)、員警、英國稅務海關總署、英國金融行為監理總署依法指定的調查人員或其他內閣大臣所公告之規則所指名的人員。海外犯罪資料提供請求之搜索票有效期間,係獲准當日起算三個月。

歐洲航空安全局EASA將制訂無人機管理草案

  近來無人機使用越來越普遍,歐洲各國無人機管理制度不同,例如在德國,無人機不得超過25公斤,英國則規定重量超過20公斤以上的無人機視同一般民航機管理。法國雖禁止飛行器未經核准不得在巴黎上空飛行,但日前頻傳有無人機圍繞著艾菲爾鐵塔、美國大使館、羅浮宮和巴士底獄紀念碑,一度造成恐慌。至於美國,聯邦航空總署(Federal Aviation Administration,FAA)原則上禁止大部份商用無人機飛行,但業者可以申請豁免。   因此,為了統一無人機相關管理辦法,歐洲航空安全局(European Aviation Safety Agency, 以下簡稱EASA)目前已擬管理草案,並將無人機分為三種等級,最低風險無人機是指低耗能飛行器(aircraft),包括模型飛機,該類飛機無須任何形式的證照,只能在操作者視線內且不得在機場與自然保護區使用,其最高飛行高度為150公尺,並禁止在人群上空使用。然而,最高風險無人機管理範圍則將與現行飛行器相關管理規則一樣,必須取得多種飛行證明。此外,無人機帶來的隱私與安全憂慮,EASA表示,這是國家層面議題,例如各國政府可要求無人機上加裝SIM卡的方式解決。   歐盟委員會(European Commission)希望無人機基本規範架構能於今年年底前到位。有關最低風險無人機相關管理草案預計於12月提出,以便業者經營無人機明年可以上路。EASA局長Patrick Ky在一份聲明中表示:「這些規定將確保無人機產業可在安全與可成長的環境下發展。」

國際海事組織公布自駕船規則制定期程表

  國際海事組織(International Maritime Organization, IMO)於2018年6月5日第99次海上安全委員會(MSC 99)上,根據日本等國提案,開始進行監理範圍之界定與檢討等相關工作(Regulatory Scoping Exercise, RSE)。於MSC 99之會議上,IMO已暫定自駕船之定義與自動化等級,並於2018年12月3日至12月7日於英國倫敦召開之MSC 100會議上進一步確定RSE框架,公布自駕船規則之制定期程表,具體措施將分為兩階段實行。第一階段預計在2019年9月前釐清可能妨礙自駕船航行,或者有修正和確認必要之IMO規定。第二階段則規劃在2020年5月召開之MSC 102前,檢討為實現自駕船所需修正及制定之IMO規則。此外,MSC 100亦批准2018年5月IMO人為因素、訓練和值班小組委員會(Sub-Committee on Human element, Training and Watchkeeping, HTW)提出之船員「疲勞指引」(Guidelines on Fatigue)修正案,並預計在2019年6月召開之MSC101上,進一步針對燃料油品質所引發之安全問題進行討論。

TOP