概念驗證中心(Proof of Concept Center, PoCC)源自美國研究型大學各校為加速大學科研成果商業化,於內部建立的專業型機構。全美第一所PoCC是2001年設立於加州大學聖地牙哥分校的「里比西中心」(the William J. von Liebig)。
為了因應美國大學科研成果商業化過程中所遇到的阻礙,例如:資金與資源缺乏導致研發人員動力不足、研發人員對於市場需求資訊不對等、技術開發提升緩慢以及政府激勵政策不足等問題。PoCC以解決大學與企業之間存在的各種差異與衝突為目標,並透過下列手段強化科技成果商業化動力,提升商業化績效:1、通過種子基金資助,為無法獲得資金支持的早期研究提供經費挹注;2、為大學科研成果商業化提供市場顧問與技術開發諮詢,以及智慧財產權保護等諮商;3、創業人才教育及培訓,促進創業文化並進行創業教育,以增強大學與產業協同創新能力。
本文為「經濟部產業技術司科技專案成果」
經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。
2024年保護美國人資料免受外國對手侵害法案即將於2024年6月生效,為美中資料傳輸增加限制2024年保護美國人資料免受外國對手侵害法案(Protecting Americans’ Data from Foreign Adversaries Act of 2024, PADFA)於2024年6月生效。該法案為美國國家安全補充法案(H.R. 815, the National Security Supplemental)的一部分。美國總統拜登在2024年4日24日簽署通過國家安全補充法案以及該法案所包含的PADFA,而PADFA將於簽署日後60天發生效力。 PADFA禁止資料經紀人將美國人民的敏感個資(personally identifiable sensitive data)傳輸到指定的外國對手國家,以及由這些國家控制的實體,如公司等。 PADFA所指之資料經紀人(data broker),是指以出售、授權、租賃、交易、轉讓、發布、揭露、提供存取權或其他方式,將個人資料提供給特定實體,並收取對價者。而該法所稱之敏感個資,定義則相當廣泛,從個人日常活動資料如行事曆資訊、電子郵件,到個人醫療、財務資料皆包含在內。 目前PADFA指定之外國對手國家,是引用自美國法典第十編4872(d)(2)條(4872(d)(2)of title 10, United States Code.),包含中華人民共和國、朝鮮民主主義人民共和國、俄羅斯聯邦、伊朗伊斯蘭共和國。而外國對手國家控制的實體則包含以下幾類 : 1.前述國家擁有20%以上所有權的實體。 2.主要營業據點、總部、住所位於前述國家的實體。 3.依前述國家法律建立的實體。 4.受前述國家指導、控制之人。 由於PADFA適用範圍廣泛,未來美中兩國資料傳輸將受更多限制。該法案生效後將由美國的聯邦貿易委員會(Federal Trade Commission)執行,該委員會將有權對違規者進行民事處罰。
德國聯邦內閣提出安全數位通訊及醫療應用法(E-Health-Gesetz)草案德國聯邦內閣於2015年5月27日提出安全數位通訊及醫療應用法(Entwurf eines Gesetzes für sichere digitale Kommunikation und Anwendungen im Gesundheitswesen, E-Health-Gesetz)草案。 德國聯邦衛生部部長說明因草案的形成一直有所爭議,以致過程冗長。而為了保證大量數據的資料維護及安全,德國資料保護及資訊流通之主管機關聯邦資料保護官(Bundesbeauftragten für den Datenschutz und die Informationsfreiheit, BfDI)及聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI),從一開始即密切參與其中合作。針對電子健保卡(die elektronische Gesundheitskarte)的資訊安全要求,德國聯邦衛生部將關注科技發展,持續更新相關規定。 本法案包括高安全標準之數位設施的建置期程,以及產生病人具體應用效益的時間規劃表,重要規定如下: 1.主檔資料管理(Stammdatenmanagement):被保險人主檔資料(Versichertenstammdaten)的測試及更新,自2016年7月1日起,於兩年內針對全國區域進行大範圍測試。 2.結合病人的緊急資訊(Notfalldaten):醫生能立即取得所有重要資訊,如過敏或過去病史等資料。當病人有該等需求之意願時,自2018年起健保卡即應包含緊急資訊。 3.藥物治療計畫(Medikationsplan):包含病人使用藥物治療的所有資訊,藥物治療計畫能於治療過程中使病人更加安全。而同時最少使用三種藥物的被保險人,自2016年起應採行藥物治療計畫。之後應可於電子健保卡取得藥物治療計畫相關資訊。 4.以電子方式發送醫療診斷報告(Arztbriefe):因目前為止醫療診斷報告仍係透過郵寄,然而為求重要資訊立即呈現,於2016年及2017年醫生以電子方式安全寄送診斷報告者,每份報告應收取55歐分的費用。 5.遠距醫療(Telemedizin):為推動遠距醫療的利用,自2017年4月1日起遠端傳輸X光照(Röntgenaufnahmen)的醫療診斷結果將收取費用。 6.醫療資訊系統的互通性:建立互通性指引(Interoperabilitätsverzeichnis)應可使醫療方面各類資訊系統所採行的標準透明化,且可使其規範更加標準化。而該指引應包含遠距醫療應用資料入口網站(Informationsportal)。 7.本法案所提期程,特別係針對實施的代表性自治組織(Organisationen der Selbstverwaltung),德國聯邦法定健康保險總會(GKV-Spitzenverband)、聯邦特約醫師協會(Kassenärztliche Bundesvereinigung)及聯邦特約牙醫協會(Kassenzahnärztliche Bundesvereinigung)適用。
何謂英國金融科技創新計畫( Project Innovate )?為了全力打造英國成為「FinTech 全球領導者地位」,及引領FinTech 國際監管規則的大國,英國金融業務監理局(Financial Conduct Authority, FCA)於2014年10月啟動了金融科技創新計畫(Project Innovate),目的就是能夠追蹤進入金融市場的新興商業模式,其中最重要的建立監理沙盒制度(Regulatory Sandbox),旨在提供企業可以在安全空間內對創新產品、服務、商業模式等進行測試,而不會立即招致參與相關活動的所有監管後果。 金融科技創新計畫增設創新中心(Innovation Hub),為創新企業提供與監管對接等各種支持。 金融科技創新計畫通過促進破壞式創新鼓勵挑戰現有的商業模式,而創新中心主要透過政策與金融科技業者交流,了解是否監管政策能夠更好的支持創新。