「敏感科技」的普遍定義,係指若流出境外,將損害特定國家之安全或其整體經濟競爭優勢,具關鍵性或敏感性的高科技研發成果或資料,在部分法制政策與公眾論述中,亦被稱為關鍵技術或核心科技等。基此,保護敏感科技、避免相關資訊洩漏於國外的制度性目的,在於藉由維持關鍵技術帶來的科技優勢,保護持有該項科技之國家的國家安全與整體經濟競爭力。
各國立法例針對敏感科技建立的技術保護制度框架,多採分散型立法的模式,亦即,保護敏感科技不致外流的管制規範,分別存在於數個不同領域的法律或行政命令當中。這些法令基本上可區分成五個類型,分別為國家機密保護,貨物(技術)之出口管制、外國投資審查機制、政府資助研發成果保護措施、以及營業秘密保護法制,而我國法亦是採取這種立法架構。目前世界主要先進國家當中,有針對敏感科技保護議題設立專法者,則屬韓國的「防止產業技術外流及產業技術保護法」,由產業技術保護委員會作為主管機關,依法指定「國家核心科技」,但為避免管制措施造成自由市場經濟的過度限制,故該法規範指定應在必要的最小限度內為之。
本文為「經濟部產業技術司科技專案成果」
全球最大搜索引擎 Google公司於去年12月中宣布,已與美國紐約公共圖書館以及哈佛大學、史丹福大學、密西根大學、牛津大學合作,將數百萬冊藏書數位化讓網友免費瀏覽。此一計畫預計花十年時間建構,在2015年啟動,經費約估1億5000萬到2億美元之間 (The Google Print Program)。雖然此一構想極具創意,但是由於將館藏圖書數位化牽涉著作權爭議,因此由125家非營利學術出版機構組成的美國大學出版協會(AAUP)已針對若干疑點去函,希望Google能釐清著作權法上之疑慮,以利整體計劃之推動。 AAUP所持最重要依據係美國著作權法第107條有關合理使用之規定。AAUP質疑,以Google如此大規模,就圖書內容性質不加以區分,全面性的圖書數位化工程,恐怕無法符合著作權法所訂出的合理使用標準。蓋著作權法有關是否符合合理使用之界定標準,是以事實情況及個案之判別方式為主,故無法想像Google如何在未進行個別之判斷前,便能夠概括性的依此而主張其享有合法權利。事實上,Google之主張與法院實務界之認知存在極大落差。 此外, Google的數位圖書館計畫在許多細部執行事項上,仍存有許多疑點,導致原先欲加入的AAUP會員,無法確保圖書內容完成數位化後,對於以銷售書籍及授權為主要營收來源之出版社,恐會產生造成市場排擠效果之憂慮。 藉由數位技術雖然可以挑戰人類夢想的極限,但過程中涉及的法律層面問題,卻相當程度羈絆了夢想前進的速度。 Google的數位圖書館計劃再次印證了新興技術與現行法規不協調的窘況。就現有事實資料以觀,Google若未能與學術出版商妥善安排著作權引發之爭議,此一計畫未來是否能順利執行,恐怕存有極大疑問。
德國法蘭克福高等法院判定ISP業者毋須揭露線上音樂下載使用者個人資料法蘭克福地區高等法院2005年1月25日駁回下級法院判決,後者判定一在家中經營非法音樂下載服務之網路使用者,其個人資料應被予以揭露。 高等法院認為,ISP業者僅提供網路接取的技術服務,毋須監測在其網路內傳輸的資料。只有當ISP業者知悉其本身網路傳輸內容涉非法時,始應被要求去攔截該網路接取。 目前德國法界實務已普遍認可是項判決結果,去年慕尼黑地區高等法院亦做出類似裁判。 然類似案件發生在英美者,則有部分ISP業者被判定,須提供網路音樂檔案持續交換者的個人細部資料。英國倫敦高等法院即於2004年一判決中,認定ISP業者應提供網路上使用者非法進行點對點音樂電影檔案傳輸之個人資料。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
歐盟將通過新的指令加強科學研究所中所使用之動物的保護2010年9月歐洲議會通過第2010/63/EU號指令(DIRECTIVE 2010/63/EU)修正文本,新的指令將修正第86/609/EEC 指令(Directive 86/609/EEC)原有規定,以加強對科學實驗用動物的保護。 2010年5月世界動物健康組織(the World Organisation for Animal Health, OIE)第78屆 大會中通過了第一個國際動物福祉標準,該標準納入OIE陸棲動物健康法典規範(OIE Terrestrial Animal Health Code)做為研究與教育用動物保護的準則,歐盟作為主要的提案者於是加速規範修正作業以回應OIE之承諾。新指令將規定歐盟各國主管機關必須在同意研究採用動物實驗前,評估其他研究方式的可能性並進行倫理評估,如需採用動物實驗應儘可能減少被試驗動物之痛楚,此外新指令也確保被實驗動物享有應有的生存環境,如適當大小的籠子等的要求。 新指令適用範圍將包括教育、訓練與基礎研究用的動物,其包含所有人類以外的活體脊椎動物以及某些可能感受痛楚的物種。靈長類動物如人猿的實驗也被禁止,除非為了該物種本身之生存所需,或者其他可能造成人類生存威脅或疾病之避免所必要方得於各國政府同意下進行之。新的指令將擴大禁止使用人猿、黑猩猩、彌猴等靈長類動物的實驗,除非有證據顯示其他物種的實驗無以達成靈長類動物實驗所能達成之目的,但也有成員國表示擴大靈長類動物實驗的限制將對於神經退化性疾病如阿茲海默症等的研究造成阻礙。 動物實驗的3R原則—取代、減量與改善(replacing, reducing, and refining)在第2010/63/EU號指令修正文本都已有相關規範,歐盟執委會表示歐盟將繼續致力於強化實驗用動物的福祉,同時為了確保新法的貫徹,新指令將授權設立歐盟層級的示範實驗室(Reference Laboratory at European Union level)協調各國採取替代動物實驗的方式。歐盟執委會表示新的指令將會在今年秋天公布。