WIPO馬拉喀什條約

  《馬拉喀什條約》全名為《關於為盲人、視力障礙者或其他印刷品閱讀障礙者獲得已出版作品提供便利的馬拉喀什條約》(Marrakesh Treaty to Facilitate Access to Published Works for Persons Who Are Blind, Visually Impaired or Otherwise Print Disabled),2013年由世界智慧財產權組織(WIPO)通過,並於2016年9月30日生效。《馬拉喀什條約》目標是在保護智慧財產權的同時,亦能擴大視覺障礙者資訊及資源獲取的管道,允許盲人及視障者得複製已出版作品、簡化無障礙文本的印刷流通與授權,增加視障者閱讀機會。條約並要求締約方必須在國內法中明文對著作權人權利的例外與限制規定,允許被授權實體(例如為視力及閱讀障礙者服務的非營利性組織),製作圖書的無障礙格式版本,包括點字文本、大字本、數位化音訊等,並允許跨國境交換,均無須請求著作權人授權。

  美國是目前擁有最多無障礙格式英文文本的國家。2019年1月28日,美國總統批准《馬拉喀什條約》後,美國成為了該條約的第50個締約國。條約在美國國內實施後,居住在條約締約國的視力障礙者將能立即獲得約550,000份無障礙文本。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ WIPO馬拉喀什條約, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8212&no=0&tp=1 (最後瀏覽日:2026/01/24)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

美國閒置頻譜發展近況

  為了讓業者間服務不受干擾,政府在規劃頻段時,皆會設置護衛帶(Guard Band),以維持服務品質。不過,隨著科技的進步,業者彼此干擾程度降低,頻譜的使用也較過去有效率,導致頻段常有閒置的情況。是故,FCC在2008年正式公告開放閒置頻譜(white space),透過業者無須取得執照,以增加頻譜的活用與增加民眾網路接取。美國在2009年完成無線電視數位化後,亦從700MHZ較低頻段留下成對5*5MHz,期望透過該頻段覆蓋率高特性,增加業者投資偏遠地區,使當地民眾享有網路帶來的便利性。   閒置頻譜的開放利用,雖可增加公益性與頻譜使用性,但亦存有干擾無線麥克風、行動電話與廣播服務等服務之虞。FCC為了兼顧各業者服務品質與頻譜有效運用,透過地理位址功能(geo-location capability),輔以成立數據資料庫的方式,藉由資訊透明減少頻譜開放後的互相干擾。今年FCC閒置頻譜的發展,3月允許全國可建置TV Band Devices,期以迅速活化頻譜利用;5月公告低功率的電台須登記資訊於數據資料庫,以避免服務受到干擾。6月,FCC宣佈Google通過測試,成為美國第三家數據資料庫業者,增加服務競爭性。部分輿論則是認為Google在擁有地圖與數據資料庫後,將會更致力在偏遠地區使用無需執照頻譜(Unlicensed Spectrum),此舉無疑是增加Google服務影響力。   政府具有規劃性開放的結果,已直接影響民間投入閒置頻譜的利用。目前,Google與微軟相繼於非經濟地區,建置「閒置頻譜」設備,期以將網路服務滲入美國各角落。西維吉尼亞大學(West Virginia University)宣佈將開發校園與周邊地區的閒置頻譜,已提供鄰近區域免費Wi-Fi服務。除此之外,亦有部分企業透過策略聯盟發展「圖書館Gigabit網路」計畫,期以透過無線電視頻段具備高涵蓋與穿透力之特性,使圖書館與附近地區皆可享受免費無線網路。該聯盟已於五月宣布選擇堪薩斯城(Kansas City)公共圖書館為試點區, 且持續公開徵求自願參與之圖書館。   綜上所敘,在業者服務彼此不受干擾為前提下,閒置頻譜的開放確實可活化使用效率與增加網路接取性。並且,輔以無線電視空白頻段之優勢,可以預見未來Wi-fi無論是網速亦或是穩定度,其品質將更為提升,使無所不在網路落實於社會每個角落。

日本《小型無人機等飛行禁止法》修正案

  內閣官房副長官於2019年12月18日召集國土交通省、警察廳、經濟產業省、防衛省等相關主管機關,召開第9次「小型無人機相關府省廳聯絡會議」(小型無人機に関する関係府省庁連絡会議),並決議由內閣於2020年向國會提交《小型無人機於重要設施周邊地區上空飛行禁止法》(重要施設の周辺地域の上空における小型無人機等の飛行の禁止に関する法律,以下簡稱「小型無人機等飛行禁止法」)修正案,將重要國際機場及其周邊地區列為小型無人機的永久禁航區。   《小型無人機等飛行禁止法》之目的係禁止小型無人機於國家重要設施上空飛行,以防患於未然,並維護國政中樞機能和良好國際關係,以及確保公共安全。依該法第2條、第9條第1項之規定,小型無人機之禁航區域包含國會議事堂、內閣總理大臣官邸、其他國家重要設施等、外國領事館等、國防相關設施和核能電廠,以及設施周邊經指定之地區。   而在機場部分,為預防危險並確保大會能順利準備及營運,日本已透過《世界盃橄欖球賽特別措施法》(ラグビーW杯特措法)及《東京奧運暨帕運特別措施法》(東京五輪・パラリンピック特措法),將國土交通大臣指定之機場及其周圍300米地區增列為小型無人機禁航區,但僅為大會期間的暫時性措施。內閣考量小型無人機之飛行可能會影響機場功能運行,甚至對經濟帶來重大不良影響,欲透過《小型無人機等飛行禁止法》修正案,將該暫時性措施改為永久措施。

日本訂定氫燃料基本戰略,推廣氫燃料使用並降低碳排放。

  日本於2017年12月26日「第2次再生能源及氫氣等閣員會議」中,作為跨省廳之國家戰略,訂定「氫燃料基本戰略」(下稱「本戰略」),2050年為展望,以活用及普及氫燃料為目標,訂定至2030年為止之政府及民間共同行動計畫。此係在2017年4月召開之「第2次再生能源及氫氣等閣員會議」中,安倍總理大臣提出為了實現世界先驅之「氫經濟」,政府應為一體化策略實施,指示於年度內訂定基本戰略。為此,經濟產業省(下稱「經產省」)邀集產官學專家,召開「氫氣及燃料電池戰略協議會」為討論審議,擬定本戰略。其提示出2050年之未來之願景,從氫氣的生產到利用之過程,跨各省廳之管制改革、技術開發關鍵基礎設施的整備等各種政策,在同一目標下為整合,擬定過程中有經產省、國土交通省、環境省、文部科學省及內閣府為共同決定。   氫燃料基本戰略之訂定,欲解決之兩大課題:   第一,能源供給途徑多樣化及自給率的提高:日本94%的能源需依靠從海外輸入化石燃料,自給率僅有6-7%,自動車98%的燃料為石油,其中87%需從中東輸入。火力發電場所消費的燃料中,液態天然氣(LNG)所佔比例也在上升中,而LNG也幾乎全靠輸入。   第二,CO2排出量的削減。日本政府2030年度之CO2排出量預定比2013年度削減25%為目標。但是,受到東日本大地震後福島第一核能發電廠事故的影響,日本國內之核能電廠幾乎都停止運轉,因此LNG火力發電廠的運轉率也提高。LNG比起煤炭或石油,其燃燒時產生CO2之量較為少,但是現在日本電力的大部分是倚賴LNG火力發電,CO2排出量仍是增加中。   因此本次決定之氫燃料基本戰略,係以確實建構日本能源安全供給體制,並同時刪減CO2排出量為目標,能源如過度倚賴化石燃料,則係違反此二大目標,因此活用不產生CO2的氫燃料。但是日本活用氫燃料之狀況,尚處於極小規模,或者是實驗階段。把氫燃料作為能源之燃料電池車(FCV),其流通數量也非常少,而氫燃料販賣價格也並非便宜。   氫燃料戰略之目標係以大幅提高氫燃料消費量,降低其價格為目的。現在日本氫燃料年間約200噸消費,預定2020年提高至4000噸,2030年提高至30萬噸,同時並整備相關商用流通網。為了提高氫燃料消費量,需實現低成本氫燃料利用,使氫燃料之價格如同汽油及LNG同一程度之成本。現在1Nm3約為100日圓,2030年降低至30日圓,最終以20日圓為目標,約為目前價格之5分之一為目標,在包含環境上價值考量,使其具備與既有能源有同等競爭力。   實現此一目標需具備:1.以便宜原料製造氫, 建立氫大量製造與大量輸送之供應鏈;2.燃料電池汽車(FCV)、發電、產業利用等大量氫燃料利用及技術之開發。 以便宜原料製造氫, 建立氫大量製造與大量輸送之供應鏈 透過活用海外未利用資源,以澳洲之「褐碳」以及汶萊之未利用瓦斯等得製造氫,目前正在大力推動國際氫燃料供應鏈之開發計畫。水分含量多之褐碳,價格低廉,製造氫氣過程中產生之CO2,利用目前正在研究進行中之CCS技術(「Carbon dioxide Capture and Storage,CO2回收及貯留技術),將可製造低廉氫氣。為了將此等海外製造之氫氣輸送至日本,使設備大規模化,並開發特殊船舶運輸等,建立國際氫燃料供應鏈。再生能源採用的擴大與活化地方:再生能源利用擴大化下,為了確保能源穩定供應,以及有必要為剩餘電力之貯藏,使用過度發電之再生能源製造氫燃料(power to gas技術)而為貯藏,為可選擇之方法,目前正在福島浪江町進行相關實證。 燃料電池汽車、發電、產業利用等大量氫燃料之利用   (1)電力領域的活用:前述氫氣國際供應鏈建立後,2030年商用化實現,以17日圓/kwh為目標,氫燃料年間供應量約30萬噸左右(發電容量約為1GW)。未來,包含其環境上價值,與既有LNG火力發電具備相等之成本競爭力為目標。其供應量。年間500萬噸~1000萬噸左右(發電容量16~30GW)。2018年1月開始在神戶市港灣人工島(Port Island),以氫作為能源,提供街區電力與熱能,為世界首先之實證進行。   (2)交通上之運用:FCV預計至2020年為止,4萬台左右之普及程度,2025年20萬台左右,2030年80萬台左右為目標。氫氣充填站,2020年為止160站、2025年320站,2020年代後半使氫氣站事業自立化。因此,管制改革、技術開發及官民(公私)一體為氫氣充填站之策略整備,三者共同推進。   燃料電池(FC)巴士2020年引進100台左右、2030年為止1200台左右。(FC)燃料電池堆高機2020年引進500台左右,2030年1萬台左右。其他如:燃料電池卡車、燃料電池小型船舶等。   (3)家庭利用:家庭用氫燃料電池(ENE FARM),係以液態瓦斯作為能源裝置,使用改質器取得氫,再與空氣中氧發生化學變化,產生電力與熱能,同時供應電力與熱水。發電過程不產生CO2,但是改質過程抽出氫時,會排出CO2。降低價格,使其普遍化為目標,固體高分子型燃料電池(PEFC)在2020年約為80萬日圓,固態酸化物燃料電池(SOFC)約為100萬日圓價格。在集合住宅及寒冷地區、歐洲等需求較大都市,開拓其市場。2030年以後,開發不產生CO2之氫燃料,擴大引進純氫燃料電池熱電聯產。   其他例如:   (4)擴大產業利用。   (5)革新技術開發。   (6)促進國民理解與地方合作。   (7)國際標準化作業等。   此一氫燃料戰略之推行下,本年3月5日為了擴大普及FCV,由氫氣充填營運業者、汽車製造業者、金融投資等11家公司,共同進行氫氣充填站整備事業,設立「日本氫氣充填站網路合作公司(英文名稱:Japan H2 Mobility,下稱「JHyM」)」,加速並具體化氫氣充填站之機制,今後以JHyM為中心,推動相關政策與事業經營。預定,本年春天再設立8個充氣站,完成開設100個氫氣充填站之目標。

TOP