初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵
資訊工業策進會科技法律研究所
2019年03月15日
壹、事件摘要
於2018年03月18日晚間10時許,美國亞利桑那州(Arizona,下稱Arizona)一名49歲的婦人,遭到配備Uber自動駕駛系統之車輛[1],在運行自動領航模式(Autopilot)下撞擊,雖然該婦人立即送往醫院,但仍回天乏術而在醫院中去世。就在前開事故發生後,Arizona州長Doug Ducey因此下令其暫停測試。[2]
此外,同年12月11日晚間10時許,在我國有一輛配備自動輔助駕駛功能的Tesla,疑似駕駛人精神不濟因而未能及時注意車前狀況,導致車禍發生,雖然肇責是否牽涉Tesla之自動輔助駕駛功能或駕駛人本身有無疲勞駕駛等情事,有待進一步釐清。[3]
綜上,不論測試或道路駕駛,現今社會已不乏具有一定自動駕駛等級之車輛於路上行駛,然而在推廣、研發或應用自動駕駛車輛(下稱自駕車)的同時,若不幸發生類似前開新聞之(車禍)事故時,相關肇事責任究應如何釐清,隨著我國已於2018年12月19日公布無人載具科技創新實驗條例以積極推動自駕車相關應用,更愈顯重要,為解決前開肇事相關疑慮,本文擬針對民事上之「過失」本質,反思自駕車相關應用可能延伸的事故責任,是否因應科技發展而有不同的過失內涵。
貳、重點說明
承上,面對自駕車相關科技與應用的世界洪流,若發生車禍等交通事故時,當事人相關之損害賠償請求,仍大多以民法上之侵權行為作為基礎,雖事故肇因種類眾多,亦常見各類的肇因共同造成事故發生,但本文考量相關議題繁複,以下僅就非依軌道行駛之自駕車、駕駛人過失內涵等框架下依序進行初探與反思:
一、我國侵權行為損害賠償係以行為人有無具抽象輕過失為斷
車禍之發生,若涉及駕駛人之行為者,受有不論財產或人身損害之人而欲請求賠償者,無論係依據民法第184條以下何條侵權行為之規定(即民法第184條第1項前段、同條項後段或第191條之2等規定),請求駕駛自駕車之人賠償,前提均為駕駛人具有過失,差別僅在舉證責任是否由請求權人(受有損害之人)負擔。
承上,既然前開侵權行為之重要成立要件為過失,其具體內容為則為駕駛人之注意義務應至何種程度,然在我國民事過失責任之架構上,有不同程度上之區分,即分別為抽象輕過失、具體輕過失及重大過失三種。申言之,抽象輕過失為欠缺應盡善良管理人之注意者義務;具體輕過失者為欠缺應與處理自己事務為同一注意者;重大過失者為顯然欠缺普通人之注意者[4]。
對此,實務見解[5]以及學者[6]歷來均認侵權行為之過失標準,應以行為人是否克盡客觀化之過失標準─抽象輕過失,倘否,則應負擔過失之賠償責任,是以,就此脈絡推論,自駕車之駕駛人若有違善良管理人注意義務致車禍發生且使他人受損害,即應負損害賠償責任。
二、駕駛人注意義務與自駕車自動駕駛程度間之互動
根據引領世界自駕車標準的領銜者─國際汽車工程師學會(Society of Automotive Engineers International,下稱SAE)所分類之自動化駕駛等級,區分為等級0至等級5(共6個等級),而等級3後之自駕車即開始逐漸將環境監控的任務從駕駛人移轉至車輛本身,而駕駛人僅在特殊條件下,方須接管駕駛車輛,更甚在等級5時是由自駕車在任何狀況下均可自行駕駛,不過在等級2前之等級,環境監控之任務大多在駕駛人身上,自駕車至多僅係協助運行駕駛人之指令[7]。
然而,自駕車駕駛人因車禍所生之侵權行為責任,誠如前述,係以駕駛人存有抽象輕過失作為前提,而過失之本質,則係雖非故意,但按其情節,(1)行為人(駕駛自駕車之人)應或能注意,卻不注意,或(2)雖可預見侵權行為(車禍肇事)之事實發生,但確信不發生[8],就此,在SAE分類等級2以前之自駕車,因監控環境之任務仍由駕駛人負擔,則該類等級自駕車之駕駛人應與一般車輛之駕駛人,負擔相同侵權行為之注意義務內容(或程度),但等級3至等級5自駕車之各式應用情境,車輛行駛環境之相關監控資訊已轉由車輛本身處理、控管,則駕駛人是否對於自駕車之車禍發生,仍具有可預見性,或得注意並防免之,則不無疑慮。
參、事件評析
綜上,本文所提不同等級自駕車,是否當然得以繼續適用傳統民事侵權行為之過失標準判斷駕駛人有無過失,實有相當程度上之衝突,蓋若自駕車之駕駛人對於行車環境資訊已不如駕駛一般車輛時,實難期待駕駛人對於車禍之發生有何預見可能,或在遇見後積極防免結果發生,倘若一概遵循傳統對車禍侵權行為之高注意義務要求─抽象輕過失責任,或將產生使不明瞭或難以預見該事故原因發生之人,卻必須就非因己誤之結果負責,某程度上似有違過失責任之本質,而質變成為無過失之擔保責任。
據此,本文認為,若要解決前開損害發生須有補償或賠償之問題,或可(1)透過保險、基金等方式填補損害,或(2)具體化等級3至等級5自駕車之駕駛人應負何等注意義務,如駕駛人須隨時處於得以接管車輛操作之狀態,使等級3以上之自駕車所應盡之注意義務與傳統侵權行為之注意義務脫鉤處理(3)與商品責任間進行相關的調和等,然而無論如何,對於此等問題或疑慮,究竟應採何方向或多方進行,甚或以其他方式解決,則有待後續更進一步的討論與分析。
[2] ADOT director's letter to Uber halting autonomous vehicle tests, ADOT, https://www.azdot.gov/media/News/news-release/2018/03/27/adot-director's-letter-to-uber-halting-autonomous-vehicle-tests (last visited Mar. 21, 2019); Ryan Randazzo, Arizona Gov. Doug Ducey suspends testing of Uber selfdriving cars, azcentral, Mar. 26, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/26/doug-ducey-uber-self-driving-cars-program-suspended-arizona/460915002/ (last visited Mar. 21, 2019); Ryan Randazzo, Bree Burkitt & Uriel J. Garcia, Self-driving Uber vehicle strikes, kills 49-year-old woman in Tempe, azcentral, Mar. 19, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/19/woman-dies-fatal-hit-strikes-self-driving-uber-crossing-road-tempe/438256002/ (last visited Mar. 21, 2019).
[3] 蘋果日報,〈台灣首例!特斯拉自動駕駛闖禍 國道上撞毀警車〉,2018/12/12,https://tw.appledaily.com/new/realtime/20181212/1482416/ (最後瀏覽日:2019/03/21)。
[4] 96年台上字第1649號判決。
[5] 19年上字第2476號判例。
[6] 王澤鑑,《侵權行為法》,自版,頁308-309(2011)。
[7] SAE International Releases Updated Visual Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles, SAE International, https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles (last visited Mar. 22, 2019).
[8] 97年度台上字第864號判決。
美國白宮於2018年3月發布〈總統管理方案(President’s Management Agenda)〉,其中發展「聯邦資料戰略(Federal Data Strategy)」,將資料作為戰略資產,藉以發展經濟、提高聯邦政府效能、促進監督與透明度,為方案中重要之工作目標之一。「聯邦資料戰略」之架構上主要包括四個組成部分,以指導聯邦資料之管理和使用:1.使命宣言:闡明戰略之意圖與核心目的;2.原則:有十大恆定原則對於機關進行指導;3.實作規範:有四十項實作規範指導機關如何利用資料之價值;4.年度行動計畫:以可衡量之活動來實踐這些實作規範。 於2019年12月23日,〈2020年行動計畫〉之最終版正式發布,其將建立堅實之基礎,在未來十年內支持戰略之實踐。詳言之,〈2020年行動計畫〉之內涵主要包含三大部分與二十個行動: 機關行動:旨在支持機關利用其資料資產,包括六大行動:(1)行動1:確認用於回答對於機關而言具有優先性之問題所需之資料;(2)行動2:將機關之資料治理制度化;(3)行動3:評估資料與相關基礎設施之成熟度;(4)行動4:確認提高員工資料技能之機會;(5)行動5:確認用於機關開放資料計劃之優先資料資產;(6)行動6:發布與更新資料庫存。 實踐共同體之行動:由特定機關或一群機關就一共通主題所採取之行動,可加速並簡化現有要求之執行,包括下列四大活動:(1)行動7:成立聯邦首席資料官委員會;(2)行動8:改善用於AI研究與發展之資料與模型資源;(3)行動9:改善財務管理資料標準;(4)行動10:將地理空間資料實務整合至聯邦資料事業中。 共享解決方案行動:為所有機關之利益、由單一機關或委員會試行或發展之活動:(1)行動11:開發聯邦事業資料資源儲存庫;(2)行動12:創建美國預算管理局聯邦資料政策委員會;(3)行動13:制定策畫之資料技能目錄;(4)行動14:制定資料倫理框架;(5)行動15:開發資料保護工具組;(6)行動16:試行一站式之標準研究應用程序;(7)行動17:試行一種自動化之資訊收集評論工具,該工具支持資料庫存之創建與更新;(8)行動18:試行用於聯邦機構之增強型資料管理工具;(9)行動19:制定資料品質評估與報告指引;(10)行動20:發展資料標準之儲存庫。 〈2020年行動計畫〉確定機關之初步行動,其對建立流程、建立能力、調整現有工作以更好地將資料作為戰略資產至關重要。未來之年度行動計畫將會在〈2020年行動計畫〉之基礎上進一步發展出針對聯邦資料管理之協調方案。
歐盟執委會通過關於《人工智慧責任指令》之立法提案歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。 《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。 歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。
歐盟將立替代能源新法日前,歐盟執委會於2008年1月23日提交了一份關於整合性發展境內替代能源之新法制架構指令建議案,並欲藉該建議案來進一步促進生質能、太陽能與風能等相關新興能源技術之開發。該建議案還提到,歐盟所屬會員國原則上須依據於2005年當時替代能源之貢獻比例為基礎,再向上調增5.5%後來作為該會員國之替代能源預定貢獻目標。不過,考量各會員國之國情並不相同,故該建議案要求歐盟對於各會員國替代能源預定貢獻目標之制定,應採「差別化」之方式,使其可先自由調整與決定究欲採取何種比重與模式來發展各類替代能源,最後,再將所決定之能源發展策略大綱置於國家行動方案書內(National action plans, 簡稱NAP),並於2010年3月31日前提交執委會進行審核。此外,執委會也設定了一系列短期性目標,以確保能漸次穩定地朝2020年之目標前進。而有關開發生質能及永續性方面,鑑於生質燃料之發展仍具相當之爭議,故於飽受各界沉重之壓力下(如:非政府民間組織以及科學聯盟團體),未來布魯塞爾方面勢要提出一更加周嚴之永續性基準,以確保在該建議案所制定之生質燃油目標下,不會進一步導致生態系統失衡、森林濫伐、人口遷徙、糧食價格上漲以及釋放更大量CO2等問題產生。
日本政府怎樣對公部門管制DeepSeek?日本政府怎樣對公部門管制DeepSeek? 資訊工業策進會科技法律研究所 2025年07月07日 2025年2月3日,日本個人情報保護委員會(Personal Information Protection Commission,簡稱PPC)發布新聞稿指出[1],DeepSeek所蒐集的資料,將會儲存在中國的伺服器裡,且為中國《國家情報法》的適用對象[2]。這可能將導致個人資料遭到中國政府調用或未經授權的存取。作為中國開發的生成式AI,DeepSeek雖以優異的文本能力迅速崛起,卻也引發資安疑慮。 身處地緣政治敏感區的日本對此高度警覺,成為率先提出警告的國家之一。台灣與日本面臨相似風險,因此日本的應對措施值得借鏡。本文將從PPC新聞稿出發,探討日本如何規範公部門使用DeepSeek。 壹、事件摘要 DeepSeek作為中國快速崛起之生成式AI服務,其使用範圍已快速在全球蔓延。然而,日本PPC發現該公司所公布之隱私政策,內容說明其所蒐集之資料將存儲於中國伺服器內,並依據中國《國家情報法》之適用範圍可能遭到中國政府調用或未經授權之存取。 日本PPC因而於2025年2月3日發布新聞稿,隨後日本數位廳於2月6日發函給各中央省廳,強調在尚未完成風險評估與資安審查之前,政府機關不應以任何形式將敏感資訊輸入DeepSeek,並建議所有業務使用應先諮詢內閣資安中心(内閣サイバーセキュリティセンター,NISC)與數位廳(デジタル庁)意見,才能判定可否導入該類工具[3]。數位大臣平將明亦在記者會中強調:「即使不是處理非機密資料,各機關也應充分考量風險,判斷是否可以使用。」(要機密情報を扱わない場合も、各省庁等でリスクを十分踏まえ、利用の可否を判断する)[4]。 本次事件成為日本對於生成式AI工具採取行政限制措施的首次案例,也引發公私部門對資料主權與跨境平台風險的新一輪討論。 貳、重點說明 一、日本對於人工智慧的治理模式 日本在人工智慧治理方面採取的是所謂的「軟法」(soft law)策略,也就是不依賴單一、強制性的法律來規範,而是以彈性、分散的方式,根據AI的實際應用場景與潛在風險,由相關機關分別負責,或透過部門之間協作因應。因此,針對DeepSeek的管理行動也不是由某一個政府部門單獨推動,而是透過跨部會協作完成的綜合性管控,例如: (一)PPC的警示性通知:PPC公開說明DeepSeek儲存架構與中國法規交錯風險,提醒政府機關與公務人員謹慎使用,避免洩漏資料。 (二)數位廳的行政指引:2025年2月6日,日本數位廳針對生成式AI的業務應用發布通知,明列三項原則:禁止涉密資料輸入、限制使用未明確審查之外部生成工具、導入前應諮詢資安機構。 (三)政策溝通與政治聲明:平將明大臣在記者會上多次強調DeepSeek雖未明列於法條中禁用,但其高風險屬性應視同「潛在危害工具」,需列入高敏感度審查項目。 二、日本的漸進式預防原則 對於DeepSeek的管制措施並未升高至法律層級,日本政府亦沒有一概禁止DeepSeek的使用,而是交由各機關獨自判斷[5]。這反映出了日本在AI治理上的「漸進式預防原則」:先以行政指引建構紅線,再視實際風險與民間回饋考慮是否立法禁用。這樣的作法既保留彈性,又讓官僚系統有所依循,避免「先開放、後收緊」所帶來的信任危機。 三、日本跟循國際趨勢 隨著生成式AI技術迅速普及,其影響已不再侷限於產業應用與商業創新,而是逐漸牽動國家資安、個資保護以及國際政治秩序。特別是生成式AI在資料存取、模型訓練來源及跨境資料流通上的高度不透明,使其成為國家安全與數位主權的新興挑戰。在這樣的背景下,各國對生成式AI工具的風險管理,也從原先聚焦於產業自律與技術規範,提升至涉及國安與外交戰略層面。 日本所採取的標準與國際趨勢相仿。例如韓國行政安全部與教育部也在同時宣布限制DeepSeek使用,歐盟、美國、澳洲等國亦有不同程度的封鎖、審查或政策勸導。日本雖然和美國皆採取「軟法」(soft law)的治理策略,然而,相較於美國以技術封鎖為主,日本因其地緣政治的考量,對於中國的生成式AI採取明確防範的態度,這一點與韓國近期禁止政府機構與學校使用中國AI工具、澳洲政府全面禁止政府設備安裝特定中國應用程式類似。 參、事件評析 這次日本政府對於DeepSeek的應對措施,反映出科技治理中的「資料主權問題」(data sovereignty):即一個國家是否有能力控制、保存與使用其管轄範圍內所生產的資料。尤其在跨境資料傳輸的背景下,一個國家是否能保障其資料不被外國企業或政府擅自使用、存取或監控,是資料主權的核心問題。 生成式AI不同於傳統AI,其運作依賴大規模訓練資料與即時伺服器連接,因此資料在輸入的瞬間可能已被收錄、轉存甚至交付第三方。日本因而對生成式AI建立「安全門檻」,要求跨境工具若未經審核,即不得進入政府資料處理流程。這樣的應對策略預示了未來國際數位政治的發展趨勢:生成式AI不只是科技商品,它已成為跨國治理與地緣競爭的核心工具。 中國通過的《國家情報法》賦予政府調閱私人企業資料的權力,使得中國境內所開發的生成式AI,儼然成為一種資訊戰略利器。若中國政府藉由DeepSeek滲透他國公部門,這將對國家安全構成潛在威脅。在此背景下,日本對公部門使用DeepSeek的管制,可被解讀為一種「數位防衛行為」,象徵著日本在數位主權議題上的前哨部署。 值得注意的是,日本在處理DeepSeek事件時,採取了「不立法限制、但公開警示」的方式來應對科技風險。此舉既避免激烈封鎖引發爭議,又對於資料的運用設下邊界。由於法令規範之制定曠日費時,為避免立法前可能產生之風險,日本先以軟性之限制與推廣手段以防止危害擴大。 台灣雖與日本同處地緣政治的敏感地帶,資料主權議題對社會影響深遠,為使我國可在尚未有立法規範之狀態下,參考日本所採之行政命令內控與公開說明外宣雙向並行之策略,對台灣或許是一種可行的借鏡模式。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]個人情報保護委員会,DeepSeekに関する情報提供,https://www.ppc.go.jp/news/careful_information/250203_alert_deepseek/ (最後瀏覽日:2025/05/06)。 [2]《中华人民共和国国家情报法》第7条第1项:「任何组织和公民都应当依法支持、协助和配合国家情报工作,保守所知悉的国家情报工作秘密。」 [3]デジタル社会推進会議幹事会事務局,DeepSeek等の生成AIの業務利用に関する注意喚起(事務連絡),https://www.digital.go.jp/assets/contents/node/basic_page/field_ref_resources/d2a5bbd2-ae8f-450c-adaa-33979181d26a/e7bfeba7/20250206_councils_social-promotion-executive_outline_01.pdf (最後瀏覽日:2025/05/06)。 [4]デジタル庁,平大臣記者会見(令和7年2月7日),https://www.digital.go.jp/speech/minister-250207-01 (最後瀏覽日:2025/05/06)。 [5]Plus Web3 media,日本政府、ディープシークを一律禁止せず 「各機関が可否を判断する」,https://plus-web3.com/media/500ds/?utm_source=chatgpt.com (最後瀏覽日:2025/05/06)。